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LETTER FROM THE EDITOR

Last year, as Editor-Elect of this MAGAZINE, I had the pleasure of working with the
Editor, Frank Farris. Frank has now completed his second term as Editor, but his influ-
ence continues to be felt. He remains active in the MAA’s publications arena. Many of
the articles and notes we publish in 2010 will reflect his selections and editing. He has
been very helpful to me in the transition. So has former Editor Allen Schwenk, and I
am grateful to them both.

With this issue we welcome our new Problems Editor, Bernardo Ábrego. He suc-
ceeds Elgin Johnston, and I want to add my voice to Frank’s in thanking Elgin for his
nine years of service.

I hope you enjoy the articles in this issue. Ken Ross’s article on repeating deci-
mals applies rigorous mathematical techniques to a very elementary topic. If you are
teaching a prodigy who is ready to study detailed proofs but not yet steeped in subject
matter, this article may be your text.

Shirley Yap shines a unifying light on differential equation techniques. Can you find
a connection between her paper and Gary Brookstone’s note on the brachistochrone
problem? Martin Griffiths gives us a case study in functional equations, and Olympia
Nicodemi tells us the history of uniformly accelerated motion. Galileo connected it
to gravity, but would his exposition of it have met the MAGAZINE’s standards? (Of
Galileo and Oresme, who is mentioned in two of our articles?)

Ethan Bolker’s note is a definitive treatment of a famous card trick. Some of the
shorter notes expand on topics raised in earlier issues of the MAGAZINE. Four of our
notes authors are students. We know that our readers will enjoy the Reviews column,
the Problems section, and the Putnam feature in this issue.

MATHEMATICS MAGAZINE is always on the lookout for interesting articles. I want
especially to encourage authors who can describe the mathematics of practical ap-
plications or connections between mathematics and other disciplines. Our Guidelines
for Authors are reprinted periodically, and the latest version appears in this issue. We
prefer email now—otherwise, there is little change from 2001.

The strengths of the MAGAZINE arise from the efforts of its authors and of its
many referees. Lists of our referees have been appearing in our December issues. If
you like what you read here, perhaps you can find some of your colleagues on these
lists and thank them personally. If you are a referee yourself, know that your work is
appreciated.

Walter Stromquist, Editor



ARTICLES

Differential Equations—
Not Just a Bag of Tricks!

SHIRLEY LLAMADO YAP
California State University, East Bay

Hayward, CA 94544
shirley.yap@csueastbay.edu

Typical first courses in differential equations comprise a variety of techniques to solve
specific equations—homogeneous, exact, separable, and so on. After taking such a
course, a student might justifiably conclude that the subject is just a bag of tricks.
However, there is a beautiful and deep theory that unifies and extends most of these
seemingly unrelated methods. The theory, introduced by the Norwegian mathemati-
cian Sophus Lie in the mid-19th century, exploits the symmetries of differential equa-
tions. The method finds a coordinate system in which the differential equation is easier
to solve.

Sophus Lie started his mathematical career studying geometry. Differential equa-
tions entered his studies in 1869, when he observed that a geometric condition related
to the symmetries of tetrahedral complexes translated into a first-order partial differ-
ential equation. Upon learning of this connection between Lie’s geometric work and
differential equations, his colleague Felix Klein communicated to Lie that his method
of integrating differential equations using transformations was analogous to the way
Abel and Galois used symmetries to solve polynomial equations [9, p. 22]. Lie then
attempted to develop for differential equations what Galois had done for algebraic
equations—classify and solve them using group theory.

The general mathematical community did not fully appreciate Lie’s work during
his lifetime—a fact that he once lamented in a letter to his colleague Adolf Mayer: “If
I only knew how I could get mathematicians interested in transformation groups and
the treatment of differential equations that arises from them. I am certain, absolutely
certain, that, at some point in the future, these theories will be recognized as funda-
mental” [7, p. 7]. At the time of Lie’s death, the theory of continuous transformations
veered towards the global, abstract tendencies of modern differential geometry and
away from Lie’s original applications in differential equations [14, p. xvi].

In the past few decades, scientists have resurrected Lie’s program and rejuvenated
research in the field. In 1950, G. Birkhoff applied Lie’s methods to engineering in
“Hydrodynamics: A Study in Logic, Fact and Similitude” [1]. In the 1980s, L. V.
Ovsiannikov and others successfully applied symmetry methods to solve problems in
fluid mechanics, gas dynamics, classification of second-order linear equations, con-
servation law theories, and other physical problems. For most of the 20th century,
engineers viewed Lie’s ideas as little more than a theoretical curiosity because of the
intractable computations involved in the process. However, the dramatic improvement
of computer algebra software in the past thirty years has made previously impossible
symmetry computations easy. Current research in the field is burgeoning with applica-
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tions in gas dynamics [17], evolutionary biology [8], quantum chemistry [2], hydrody-
namics [4], signal processing [5], and many other areas of science and engineering.

Knowledge of elementary differential equations and multivariable calculus provides
enough background to understand the salient features of the symmetry method. The
main idea is that complex motions can be reduced to simple translations, if we look
carefully enough.

Symmetries

Symmetries of algebraic equations In calculus, students learn that the graph of
f (x) = x2 is symmetric with respect to reflection across the y-axis, the graph of
f (x) = x3 is symmetric about the origin, and the graph of sin(x) is symmetric with
respect to horizontal translation by 2π . These transformations are symmetries of f
because they map the graph of f to itself. In general, for a function f : R → R, a
symmetry of f is a continuous map from R

2 to R
2 that maps the graph of f to itself

and has a continuous inverse.
For example, for any nonzero t ∈ R, φt : (x, y) �→ (t x, t2 y) is a symmetry of y =

x2 because if (a, b) is a point on the graph of y = x2, t2b = (ta)2, which means that
φt (a, b) = (ta, t2b) is also on the graph of y = x2. FIGURE 1 shows this symmetry for
selected values of t . If we imagine t to represent time, then the letters and curves in the
figure allow us to follow the motion of space under these symmetries at various points
in time. A similar calculation shows that φt : (x, y) �→ (x + t, et y) is a symmetry of
y = ex , as shown in FIGURE 2.
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Figure 1 These pictures show how φt : (x, y) �→ (tx, t2y) maps the graph of y = x2 to
itself. For reference, we show how φt transforms concentric circles and various points on
and off the graph.
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Figure 2 φt : (x, y) �→ (x + t, ety) is a symmetry of f (x) = ex
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If f is a function from R
2 to R, a symmetry of f is a transformation of R

3 that sends
any point that satisfies z = f (x, y) to another point that satisfies the same equation.
For example, the solution set of z = x2 + y2 is a paraboloid, which can be thought
of as a union of circles parallel to the xy-plane. The family of maps φt : (x, y, z) �→
(t x, t y, t2z) moves circles up the paraboloid as t increases. FIGURE 3 shows a few
snapshots.
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Figure 3 Solutions of z = x2 + y2 move up the parabola under the transformation φt :
(x, y, z) �→ (tx, ty, t2z). For reference, we show how a sphere is transformed under φt .

Symmetries of ordinary differential equations Symmetries of ordinary differential
equations (ODEs) also permute the solutions of the equations, but in the case of ODEs,
a solution is an entire curve, not just a point.

Given the first order ODE

dy

dx
= ω(x, y),

with solutions defined in a domain D of R2, we look for transformations φ from D to D
(or some subset S ⊂ D to itself) that map solutions to other solutions. For reasons to be
described, we also need φ to be differentiable and have a differentiable inverse. These
conditions are equivalent to a transformation φ(x, y) = (u(x, y), v(x, y)) having a
nonzero Jacobian:

ux vy − vx uy �= 0. (1)

EXAMPLE 1. The graphs of solutions of the simplest ODE

dy

dx
= 0 (2)

are horizontal lines in the plane. For any real number t , φt : (x, y) �→ (et x, et y) is
a symmetry of (2) because it maps horizontal lines to other horizontal lines. Any of
these transformations with t �= 0 will stretch or shrink the lines, but horizontal lines
are preserved as sets.

EXAMPLE 2. Each solution of

dy

dx
= 2y

x
(3)

is a parabola passing through (0, 0). For any real number t , φt : (x, y) �→ (u(t), v(t))
= (x, et y) is a symmetry of (3) because φt maps the curve y = cx2 to v = (cet)u2,
which is another parabola passing through the origin.
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Figure 4 φt : (x, y) �→ (x, ty) is a symmetry of (3)

EXAMPLE 3. The nonconstant solutions to

dy

dx
=

{
1−y2

x x �= 0
0 x = 0

(4)

are the curves yc(x) = cx2−1
cx2+1

, where c is a positive constant. For any t , φt : (x, y) �→
(u, v) := (et x, y) is a symmetry of (4) because the image v(u) of a solution y(x) is
another solution:

(
x,

cx2 − 1

cx2 + 1

)
→

(
et x,

cx2 − 1

cx2 + 1

)
= (u, v), so

v(u) = c(u/et)2 − 1

c(u/et)2 + 1
= (c/e2t)x2 − 1

(c/e2t)x2 + 1
= yce−2t (u).
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Figure 5 φt : (x, y) �→ (u, v) := (etx, y) is a symmetry of (4)

Each of these symmetry examples involves a parameter t and so represents a whole
family of symmetries parametrized by t . Although there are other types of symmetries,
we are mainly interested in these so-called one-parameter Lie groups. Olver [14, p. 34]
gives a formal definition of this phrase.

Since the solutions to equations (2), (3), and (4) were already known, it was easy
to check if a given transformation was a symmetry of those differential equations.
However, the greatest utility of symmetries is to help find solutions. To that end, we
describe how to compute symmetries of an ODE without knowing the solutions.



VOL. 83, NO. 1, FEBRUARY 2010 7

Computing symmetries We develop a formula that allows us to check whether a
transformation (or really a family of transformations) is a symmetry of an ODE, but
our real goal is to use that formula to find symmetries. If y(x) is a solution to the first
order ordinary differential equation

dy

dx
= ω(x, y), (5)

a symmetry of (5) maps a solution y(x) to another solution v(u). In other words, v(u)

also solves (5): dv

du = ω(u, v). Expanding the differentials dv and du in terms of dx
and dy results in a partial differential equation (PDE) for u and v:

ω(u, v) = dv

du
= vx dx + vy dy

ux dx + uy dy
= vx dx + vy y′(x) dx

ux dx + uy y′(x) dx
= vx + vy ω(x, y)

ux + uy ω(x, y)
.

Thus, any two functions u(x, y) and v(x, y) that solve the PDE

ω(u, v) = vx + vy ω(x, y)

ux + uy ω(x, y)
(6)

and the change of variable condition (1) fit together as the components of a symmetry
of (5). In general, (6) may be a complicated PDE for u and v. However, we can impose
additional conditions on u and v that simplify (6).

For example, the symmetry condition for the differential equation

dy

dx
= y

is

v = vx + vy y

ux + uy y
. (7)

We do not seek all solutions of (7), merely some; one way is to set v := y, which
reduces it to

ux + yuy = 1. (8)

Setting ux = 0 or uy = 0 could further simplify (8). Since setting ux = 0 would pro-
duce a degenerate transformation, violating condition (1), we set uy = 0, which re-
duces (8) to ux = 1. This equation is satisfied by u = x + t , where t is a constant of
integration. Thus, the family of translations φt (x, y) = (x + t, y) all solve (8).

In fact, a similar analysis shows that if ω(x, y) is independent of x , then (5) is sym-
metric under the translations (x, y) �→ (x + t, y). More generally, higher order ODEs
that are missing the independent variable, such as yxx yx = y2, are also symmetric un-
der translations in the x direction. Similarly, ODEs that are missing the dependent
variable are symmetric under the translations (x, y) �→ (x, y + t). This is just the fa-
miliar “+C” from calculus.

Transformations that scale the independent or dependent variable are also common
symmetries of differential equations. For example, according to (6), the symmetries of
(4) satisfy

vx + vy(
1−y2

x )

ux + uy(
1−y2

x )
= 1 − v2

u
. (9)
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We again impose the conditions vx = uy = 0 and v = y to reduce (9) to x ux = u,
with solution u = et x , where t is a constant of integration. Thus, (x, y) �→ (et x, y) is
a symmetry of (4).

An example of a PDE with a more complex symmetry arises from the ODE

dy

dx
= y + 1

x
+ y2

x3
, (10)

which is symmetric under the family of maps φt : (x, y) �→ (u, v) = ( x
1−t x ,

y
1−t x ). Al-

though the computations that derive these symmetries are too lengthy to include in this
paper, we check the symmetry condition v(u) = ω(u, v):

dv

du
=

t y
(1−t x)2 dx + 1

1−t x dy
1

(1−t x)2 dx
= t y + (1 − t x)

dy

dx

= t y + (1 − t x)

(
y + 1

x
+ y2

x3

)
= y + (1 − t x)

x
+ (1 − t x)

(
y2

x3

)

=
y

1−t x + 1
x

1−t x

+
( y

1−t x

)2

(
x

1−t x

)3 = v + 1

u
− v2

u3
.

In general, (6) is difficult to solve because it is nonlinear. However, the first-order term
of the Taylor series expansion of (6) is a linear PDE and can be integrated to construct
the symmetry.

Using symmetries to solve differential equations

The way symmetries are used to solve differential equations highlights a major theme
in mathematics: Complicated problems can become simple when viewed in the right
coordinate system. We first show how to solve ODEs with translational symmetries
and then show how a general symmetry can be turned into a translational symmetry.

Suppose that y′(x) = ω(x, y) is symmetric with respect to translations in the y-
direction: φt (x, y) = (u(t), v(t)) := (x, y + t). Then

ω(x, y + t) = ω(u(t), v(t)) = dv

du
= d(y + t)

dx
= dy

dx
= ω(x, y),

which shows that ω is independent of y. Therefore, y′(x) = ω(x), which is readily
solved by integration: y(x) = ∫

ω(x) dx . These computations show that any differen-
tial equation with a translational symmetry in the y direction is separable.

Converting a general symmetry into a translational symmetry Now suppose that
y′(x) = ω(x, y) is invariant under some one-parameter Lie group that is not necessar-
ily a translational symmetry. Then, by what is sometimes called a “straightening out
theorem,” there is a differentiable change of variables (x, y) �→ (r, s), defined in some
domain of R

2, for which y′(x) = ω(x, y) is invariant under translations in the s direc-
tion [14, p. 30]. In the next few paragraphs, we show how to compute the canonical
coordinates r and s and then express y′(x) = ω(x, y) in the new coordinate system.

Given a point (x, y) in the plane, the set of points {φt (x, y)|a < t < b} traces a
curve in the plane called an orbit of φt . We call φt a flow because each point on the
plane can be thought of as a molecule of fluid traveling along the trajectory defined by
φt . For example, the orbits of (x, y) �→ (et x, y) are horizontal lines. Differentiating
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(u(t), v(t)) and evaluating at t = 0 results in the direction field (ξ(x, y), η(x, y)) :=
(u′(0), v′(0)) of the flow. If ξ(x, y) ≡ 0, then the orbits are vertical lines. Otherwise,
the orbits are are exactly the integral curves of the vector field of the flow and are the
solutions to

dy

dx
= η(x, y)

ξ(x, y)
. (11)

For example, the vector field corresponding to the flow φt (x, y) = (u(t), v(t)) :=(
x

1−t x ,
y

1−t x

)
is (ξ(x, y), η(x, y)) = (x2, yx). The integral curves y(x) of (x2, yx) are

the solutions to

dy

dx
= yx

x2
= y

x
,

which are the rays y = cx (x �= 0) emanating from the origin. Thus, for each constant
c, the set of points (x, y) such that yx−1 = c constitutes one orbit. In general, the
constant of integration from (11) parametrizes the orbits of φt .

0.
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Figure 6 The orbits of various points under φt : (x, y) �→ ( x
1−tx ,

y
1−tx )

Geometrically, converting an arbitrary symmetry into a translational symmetry
means transforming the orbits of the symmetry into the orbits of the translational
symmetry (x, y) �→ (x, y + t), which are just vertical trajectories of unit speed. Alge-
braically, straightening the curves means that r is constant on the orbits and s travels
at unit speed speed along the orbits: s(u(t), v(t)) = s(φt(x, y)) = s(x, y) + t. The
function r(x, y) is easily computed by solving for the constant of integration in (11).
For example, since the orbits of the symmetry (x, y) �→ ( x

1−t x ,
y

1−t x ) are given by
y = cx , r(x, y) := yx−1 is constant on the orbits.

Differentiating the normalizing condition s(x, y) + t = s(u(t), v(t)) with respect
to t and evaluating at t = 0 yields the following PDE for s:

1 = sx u′(0) + syv
′(0) = sxξ(x, y) + syη(x, y). (12)

In the (r, s) coordinate system, y′(x) = ω(x, y) becomes

ds

dr
= sx dx + sy dy

rx dx + ry dy
= sx + sy y′

rx + ry y′ , (13)

where sx +sy y′
rx +ry y′ is independent of s because its symmetries in the (r, s) coordinate sys-

tem are translations in the s direction. After integrating (13), we can express the
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x

y

r(x, y)

s(x, y)

Figure 7 A change of variables turns the orbits of φt into vertical lines

solution s(r) in the original xy coordinate system if the transformation (x, y) →
(r(x, y), s(x, y)) is invertible. Therefore, the Jacobian determinant of the transfor-
mation must be nonzero:

rx sy − rysx �= 0. (14)

Thus, equations (11), (12), and inequality (14) determine the change of variables
(x, y) �→ (r, s) that convert a symmetry to a translational symmetry.

EXAMPLE 1. The orbits of the symmetry (x, y) �→ (et x, y) of (4) are horizontal
lines in the plane. Thus, r := y is constant on the orbits of φt and (12) is equal to
sx x = 1 with solution s = ln |x |.

In the r -s coordinate system, (4) becomes

ds

dr
=

1
x dx

dy
= 1

x

dx

dy
= 1

x

x

1 − y2
= 1

1 − y2
= 1

1 − r 2
, (15)

with solution s = ln
(√

1+r
1−r

)
+ c, where c is a constant of integration. Substituting

r = y and s = ln(x) yields the family of solutions y = Cx2−1
Cx2+1

, where C is an arbitrary
constant.

EXAMPLE 2. We have already shown that (10) is symmetric under the maps
φt (x, y) = ( x

1−t x ,
y

1−t x ) and that r(x, y) := yx−1 is constant on the orbits of φt . To
solve for s, we set sy = 0 so that (12) becomes sx = 1

x2 , whose solution is s(x) = − 1
x .

In the (r, s) coordinate system, (10) becomes

ds

dr
= − 1

x2

[
− y

x2
+ 1

x

(
y + 1

x
+ y2

x3

)]−1

= 1

1 + y2

x2

= 1

1 + r 2
.

This is easily solved to yield s(r) = tan−1(r) + c, which, after substituting r = yx−1

and s = −x−1, becomes y = x tan
(−x−1 + c

)
. Several solutions are shown in FIG-

URE 8.

Standard integration techniques seen in the light of symmetry

We now show how various techniques in differential equations are just specific in-
stances of finding canonical coordinates for the equation.
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Figure 8 The behavior of several solutions of (10) under φt : (x, y) �→ ( x
1−tx ,

y
1−tx ) at

various points in time. For reference, we also show how φt transforms circles in the
plane.

Compute family of

symmetries of the

differential equation.

Change variables

to convert symmetry

into translational

symmetry.

In the new coordinate

system, the ODE

becomes separable.

Integrate to obtain

solution and express

solution in old
coordinate system.

Figure 9 Summary of the symmetry method

Homogeneous coordinates A homogeneous equation has the form

dy

dx
= G

( y

x

)
, (16)

where G only depends on the ratio of y to x .
The maps φt : (x, y) → (et x, et y) are symmetries of (16) whose orbits are rays

emanating from the origin as well as the orbit consisting of the origin. The function
r := yx−1 is constant on those orbits and s := ln |x | satisfies (12), and (14). Under this
change of coordinates (x, y) �→ (r, s), (16) becomes the separable equation

ds

dr
= sx dx + sydy

rx dx + rydy
=

1
x

− y
x2 + G(

y
x ) 1

x

= 1

G(r) − r
.

Integrating factor Recall that the solution to the inhomogeneous first-order linear
equation

y′ + F(x)y = G(x) (17)

is

y = −e
∫ x

0 F dτ

∫
e

∫ x
0 F dτ G(x) dx,

which is computed by multiplying (17) by e
∫ x

0 F dτ and integrating both sides of the
equality.

The symmetry method explains the presence of e
∫ x

0 F dτ in the solution of (17): Since
yh := e

∫ x
0 F dτ is a solution to the homogeneous equation

y′ + F(x)y = 0,
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(17) is symmetric under the family of transformations φt : (x, y) �→ (x, y + t yh(x)).

In other words, if y(x) is a solution to (17), then so is its image under φt , y(x) + t yh(x),
because

d

dx

[
y(x) + t yh(x)

] + F(x)
[
y(x) + t yh(x)

]

= y(x) + F(x)y(x) + [
t yh(x)′ + t F(x)yh(x)

]
= y(x) + F(x)y(x) = G(x).

Since the orbits of φt are already vertical lines, we set r := x . Since ξ = 0 and
v′(0) = yh(t), (12) becomes sy = yh(x)−1 with solution s(x, y) = yyh(x)−1. In the
(r, s) coordinate system, (17) becomes

ds

dr
= sx dx + sydy

rx dx + rydy
=

− yy′
h

y2
h

dx + 1
yh

dy

dx

= − y (−F(x)yh)

y2
h

+ 1

yh

(
dy

dx

)

= −−F(x)y

yh
+ 1

yh

[
G(x) − F(x)y

] = G(x)

yh(x)
= G(r)

yh(r)
,

with solution s(r) = ∫
G(r)

yh(r)
dr = ∫

G(r)

e
∫ x
0 F dτ

dr.

Reduction of order In this example, symmetry is used to lower the order of an ODE
from two to one.

The homogeneous second order linear equation

yxx + p(x)yx + q(x)y = 0 (18)

is invariant under the family of transformations φt : (x, y) �→ (x, et y) because the
scalar factors out of each term:

(et y)xx + p(x)(et y)x + q(x)(et y) = et
(
yxx + p(x)yx + q(x)y

) = 0.

The orbits of φt are already vertical so that r := x is constant on the orbits. Since
ξ = 0 and η = y, (12) has solution s := ln |y|. In these coordinates, (18) becomes

sxx + s2
x + p(x)sx + q(x) = 0. (19)

Since (19) is independent of s, we can let z := sx and reduce the order of (19) to
the first order ODE

zx + z2 + p(x)z + q(x) = 0.

Converting a partial differential equation into an ordinary differential equation
For ODEs, a family of symmetries reduces the degree of the ODE by one. Analogously,
symmetries can reduce a PDE of n variables to a PDE of n − 1 variables.

For example, the so-called transport equation

zx + zy = k, k ∈ R (20)

is symmetric under φt : (x, y, z) �→ (u, v, z) = (x + t, y + t, z) because

∂z

∂x
= ∂z

∂u

∂u

∂x
+ ∂z

∂v

∂v

∂x
= ∂z

∂u
and

∂z

∂y
= ∂z

∂u

∂u

∂y
+ ∂z

∂v

∂v

∂y
= ∂z

∂v
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so that zu + zv = k whenever zx + zy = k. Geometrically, this means that φt maps the
solution surface given by z(x, y) to another solution surface. The functions r := y − x
and s := 1

2 y + 1
2 x and q(x, y, z) are canonical coordinates for φt : (x, y, z) �→ (x +

t, y + t, z).
In the (r, s, q) coordinate system,

ux = ∂u

∂r

∂r

∂x
+ ∂u

∂s

∂s

∂x
= −ur + 1

2
us and

uy = ∂u

∂r

∂r

∂y
+ ∂u

∂s

∂s

∂y
= ur + 1

2
us .

Therefore, k = ux + uy = us and in the (r, s, q) coordinate system, (20) is equivalent
to the ODE k = us .

Resources for further reading

We have only touched upon some of the fundamental ideas of the symmetry method:
computing symmetries, transforming arbitrary symmetries to translational symmetries,
and reducing first-order ODEs to integration. There are many facets of the method that
have not been discussed here, such as the linearization of the symmetry condition (6)
and the applications to higher order ODEs and PDEs. Fortunately, there are many
resources available for the interested reader, such as Olver’s classic text Applications
of Lie Groups to Differential Equations [14], which provided material for the sections
on homogeneous coordinates and reduction of order.

For the reader who has had vector calculus and elementary differential equations,
we recommend Hydon’s Symmetry Methods for Differential Equations [10], from
which equations (4), (7), and (10) appear as examples or exercises. Readers who have
had some exposure to differential geometry may enjoy Bluman and Kumei’s Symme-
tries of Differential Equations [3], from which the explanation on integrating factors
is taken. Experienced researchers will find the CRC Handbook of Lie Group Analysis
of Differential Equations [11], edited by Ibragimov, a useful resource that covers Lie-
Bäcklund, conditional and non-classical symmetries, approximate symmetry groups
for equations with a small parameter, group analysis of differential equations with dis-
tributions, integro-differential equations, recursions, and symbolic software packages.

Miller’s book Symmetry and Separation of Variables discusses symmetry applied to
the Helmholtz, heat, wave, Laplace, and Schrodinger’s equation and other equations of
mathematical physics. Hawkins’ Emergence of the Theory of Lie Groups, from which
much of the introduction to this article is based, provides a thorough history of the
symmetry method and the theory of transformation groups. Connections between Lie
and Klein can be found in Felix Klein and Sophus Lie by I. M. Yaglom.
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Before reading any further, I invite you to find a function f : R → R satisfying the
equation f ( f (x)) = −x for all x ∈ R.

After a few moments thought you might come to the same conclusion as I did,
namely that this is not an entirely trivial problem. It is an example of a functional
equation, for which the solutions are functions of x rather than values of x . Such an
equation generally expresses a relationship between the value of a function at some
point and its values at other points. We tend only to use the term ‘functional equation’
for equations that are not, in a simple sense at least, reducible to algebraic equations.

Of course, if we allowed f to be complex-valued then the solution f (z) = i z is im-
mediate. This highlights a common trait amongst functional equations; namely that the
ease of solution often depends on the domain of the function. For example, Cauchy’s
functional equation, f (x + y) = f (x) + f (y), is easy to solve if we restrict x and y
to the rationals (see [4, p. 1]), but its solution over the real numbers turns out to be a
rather more difficult problem. Recurrence relations, such as the Fibonacci recurrence
Fn = Fn−1 + Fn−2 for n ≥ 3 with F1 = F2 = 1, may be thought of as functional equa-
tions for which the domain of the function is N. When such restrictions are imposed on
a function they may, in addition to affecting the ease of solution, determine the number
of solutions possessed by a particular functional equation. If it has any solutions at all,
there may be a finite number of them, or infinitely many.

In this article we explore the equation f ( f (x)) = −x and some generalizations.
This functional equation is appealing because it is non-trivial yet accessible, and has
some noteworthy results associated with it. Of particular interest to us is the way that
the enforced graphical symmetry of any solution to the equation implies that it must
possess a certain non-obvious analytic property. Indeed, a central theme here is this
interplay of the visual with the analytic aspects of the problem. We consider the general
properties shared by functions satisfying this equation, as well as specific solutions.

Some history

Functional equations may, in spirit if not in name, be traced back to antiquity. Indeed,
Archimedes used recurrence relations to obtain ever better approximations to π . In
the 14th century the French philosopher and mathematician Nicole Oresme used what
was essentially a functional equation to give an indirect definition of linear functions.
Possibly the most well-known functional equation is

g(1 + z) = zg(z), (1)

which is satisfied by Euler’s gamma function �(z) for all z ∈ C except the non-positive
integers. It is worth noting however, that the gamma function is not the only solution
to this equation. Indeed, the function g(z) = 0 for all z ∈ C also fits the bill, among

Math. Mag. 83 (2010) 15–23. doi:10.4169/002557010X479956. c© Mathematical Association of America
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others. Nonetheless, it is true that �(z) is the unique solution to the system of three
functional equations consisting of (1) and the two further equations given by:

22z−1

√
π

g(z)g

(
z + 1

2

)
= g(2z) and g(z)g(1 − z) = π

sin(πz)
.

Another famous historical example,

h(s) = 2sπ s−1 sin
(πs

2

)
�(1 − s)h(1 − s),

is satisfied by the Riemann zeta function ζ(z). A form of this equation can be seen in
Riemann’s seminal 1859 paper on the distribution of the primes [7]. Papers on func-
tional equations appeared sporadically throughout the first half of the 20th century, but
it was not until 1968 that the first book explicitly devoted to the subject was published
[3]. A short biography of the author of this book, the Polish mathematician Marek
Kuzcma, can be found on the website [5]. Nowadays of course, this area is very much
more in the mainstream of mathematics; indeed, even bright teenagers are exposed
to functional equations via mathematical olympiads [2, 6]. These equations have ap-
plications in fields as diverse as geometry, engineering, economics, probability and
statistics. See [1] for further details concerning the history of functional equations and
their widespread applications.

A few simple properties of f

The following function is tantalizingly close to satisfying our requirements:

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 1
x if x ≥ 1

1
x if 0 < x < 1

0 if x = 0
1
x if −1 ≤ x < 0

− 1
x if x < −1

.

It gives f ( f (x)) = −x for all real numbers except for x = −1, and maps onto all real
numbers except for 1. The graph of y = f (x) is shown in FIGURE 1. Is it possible
to tweak f slightly in order to obtain a solution? This is something we consider in
due course. Let us first ascertain some simple properties necessarily possessed by any
function f : R → R satisfying f ( f (x)) = −x for all x ∈ R, assuming such a function
exists!

Possibly the most obvious property of f is that it is onto. It must also be true that

f (0) = 0.

In order to show this, assume to the contrary that f (0) = t for some t �= 0. Then
f (t) = f ( f (0)) = 0 and thus f ( f (t)) = f (0) = t , contradicting the definition of f .

A clue to what is essentially the defining property of the graph of f may be gleaned
from FIGURE 1. Indeed:

The graph y = f (x) has rotational symmetry of order 4, (2)

where the center of rotation is at the origin. This statement is taken to mean that in
rotating the graph of y = f (x) about the origin (either clockwise or anticlockwise),
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Figure 1 A function that almost works

we obtain an exact copy of y = f (x) precisely when the angle of rotation is either π/2,
π , 3π/2 or 2π . To see that (2) is in fact true, choose any a �= 0. Then f (a) = b for
some b ∈ R. From the definition of f , f (b) = f ( f (a)) = −a, f (−a) = f ( f (b)) =
−b and f (−b) = f ( f (−a)) = a. Thus the graph contains the points (a, b), (b, −a),
(−a, −b) and (−b, a). These points form the vertices of a square whose center is the
origin, as required.

From (2) and the fact that f (0) = 0, it follows immediately that the only point of
intersection of y = f (x) with the x-axis occurs at the origin. This in turn implies that

f (x) is discontinuous for at least one value of x ,

as we now explain. Suppose, to the contrary, that f (x) is continuous for all x > 0.
Then, since the curve y = f (x) cannot cross the x-axis when x > 0, it must, for
x > 0, lie either entirely in the first quadrant or entirely in the fourth quadrant. This,
however, contradicts (2), as required.

It must also be the case that

f (x) is a bijective function.

Since f : R → R is onto, all we need do is show that f is necessarily one-to-one. If
f (a) = f (b) then −a = f ( f (a)) = f ( f (b)) = −b so that a = b, showing that f is
indeed one-to-one.

Let us now return to our initial attempt at finding a suitable function f . We can
eliminate the problem at x = −1 by redefining f on the non-zero integers as follows.
With n ∈ N then

f (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2n if k = 2n − 1
−2n + 1 if k = −2n
2n if k = −2n + 1
2n − 1 if k = 2n

.
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Of course, this in turn causes a problem with numbers of the form 1
n where n ∈ Z such

that n ≥ 2 or n ≤ −2. However, this is easily dealt with. With n ∈ N we redefine f by

f (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1
2n+1 if k = 1

2n

− 1
2n if k = − 1

2n+1
1

2n+1 if k = − 1
2n

1
2n if k = 1

2n+1

,

giving a function that does indeed satisfy f ( f (x)) = −x .
Another way of defining f is to set f (0) = 0 and then cycle the other num-

bers amongst themselves within certain intervals. For example, the numbers in
[−2, 0) ∪ (0, 2] can be mapped to each other as follows. If x ∈ (0, 1] then f (x) =
x + 1, f (x + 1) = −x , f (−x) = −x − 1 and f (−x − 1) = x . In general, with m
a positive integer and x ∈ (2m − 2, 2m − 1], the given mapping can be used for the
numbers in [−2m, −2m + 2) ∪ (2m − 2, 2m]. The graph of this function looks a bit
like the sails of an infinite windmill (with gaps), part of which is shown in FIGURE 2.

–6 –4 –2 2 4 6
x

–6

–4

–2

2

4

6
y

Figure 2 A ‘windmill’ function

Delving a little deeper

Both of the solutions found in the previous section possessed infinitely many discon-
tinuities. We may next ask ourselves whether it is possible to find a solution that has
only finitely many. The answer turns out to be an emphatic “No.” In fact,

Every function f : R → R satisfying f ( f (x)) = −x for all x ∈ R has infinitely
many discontinuities.

To explain why this is so requires rather more intricate reasoning than that used thus
far, and is indeed the primary aim of this section.
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In order both to set the scene and to provide further motivation for the construc-
tions appearing later in this article, we start by outlining the main ideas behind the
proof. Suppose, for example, that f is continuous on some open interval (a, b). Then,
under a rotation of π/2, the induced image of (a, b) is some disjoint interval (c, d).
Successive rotations then give induced images (−b, −a), (−d, −c) and (a, b). The
simplest scenario might be something like (0, 1) to (1, ∞) to (−1, 0) to (−∞, −1).
Since f (0) = 0 we just need to deal with the points x = 1 and x = −1 in this case.
However, the addition of one more point will result in the addition of another three,
so this will not quite work. The detailed proof that follows merely expands on this
idea of counting points and intervals under the assumption that there are only finitely
many discontinuities. All potential arrangements of intervals are accounted for, and it
is shown that such a mismatch always occurs under this assumption, thereby providing
a contradiction.

We already know that f (x) is discontinuous for at least one positive value of x . Let
us now suppose that f has only a finite number of discontinuities. Then there exists
some positive r ∈ R such that f is discontinuous at x = r but continuous for all x > r .
Since the graph of f does not intersect the positive x-axis we may assume, without
loss of generality, that f (x) > 0 for all x > r , for if this were not the case then we
would simply replace f with − f . The portion of the graph y = f (x) lying in the first
quadrant, {(x, y) : x > 0, y > 0}, consists of:

(i) A finite number, m say, of isolated points. If m ≥ 1 we denote these points by
(x1, y1), (x2, y2), . . . , (xm, ym).

(ii) The infinite continuous curve C∞, which is of the form {(x, f (x)) : x ≥ r} or
{(x, f (x)) : x > r}. We define IC∞ either as [r, ∞) or (r, ∞) accordingly.

(iii) A finite number, k say, of continuous curve segments, each of the form {(x, f (x)) :
a ≤ x ≤ b}, {(x, f (x)) : a < x ≤ b}, {(x, f (x)) : a ≤ x < b} or {(x, f (x)) :
a < x < b} for some a, b ∈ R with 0 ≤ a < b ≤ r . Let us denote these curves
and their associated intervals by C j and I j respectively, j = 1, 2, . . . , k. The
interval I j is either (a, b), (a, b], [a, b) or [a, b] for some a, b ∈ R with a < b,
depending on the form of C j . We say, for example, that the interval (a, b] has an
open lower endpoint and a closed upper endpoint.

Note that the existence of C∞ in conjunction with (2) precludes each C j from
being infinite, and also that (2) implies that any given C j will be strictly monotone
over I j .

From (2) we know that on rotating the portion of the graph of y = f (x) in the first
quadrant through π/2 clockwise about the origin we obtain the portion of the graph
of y = f (x) in the fourth quadrant. Under this rotation isolated points get mapped to
isolated points, finite continuous curve segments defined on closed-closed intervals get
mapped to finite continuous curve segments defined on closed-closed intervals, and so
on (there is of course the possibility that curves defined on open-closed intervals get
mapped to curves defined on closed-open intervals, and vice versa). We shall use C j

and I j to denote the image of C j and the induced image of I j respectively, and (x j , y j )

to denote the image of (x j , y j ).
We next need to consider the image of C∞ in the fourth quadrant, C∞ say, under

the aforementioned rotation. Since f is continuous and one-to-one on (r, ∞), it must
be strictly monotone for x > r . If f is decreasing then it is bounded below by 0. If, on
the other hand, f is increasing then, from (2), it certainly cannot exceed r . Either way,
we must have that

lim
x→∞ f (x) = a
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for some a ∈ R with a ≥ 0. Note that the fact that f is strictly monotone on (r, ∞)

means that f (x) can never actually equal a. Thus the interval, IC∞ say, over which the
infinite continuous curve C∞ is defined, is either a finite closed-open, open-closed or
open-open interval (the latter if, and only if, C∞ is of the form {(x, f (x)) : x > r}).

For the remainder of the argument, it is important to realize that the intervals de-
fined in (ii) and (iii) each have two associated endpoints. Even if two intervals are
contiguous, such as (a, b] and (b, c) or (a, b) and (b, c) for example, they would still
have total of four endpoints between them (three open and and one closed for the first
pair, and four open for the second pair).

Let S denote the set of all 2k + 2 intervals defining segments of continuous curves
in the graph y = f (x) for x > 0. The intervals in S may be ordered according to where
they lie on the positive x-axis. To this end, let J1 be the unique element of S with g.l.b.
equal to zero, J2 be the unique element of S whose g.l.b. is equal to the l.u.b. of J1, and
so on. Suppose that for some i ∈ {1, 2, . . . , 2k + 1} the l.u.b. of Ji is a. Then there is
an isolated point with x-coordinate a if, and only if, the upper endpoint of Ji and lower
endpoint of Ji+1 are both open. If, on the other hand, there is no such isolated point
then either the upper endpoint of Ji is open and the lower endpoint of Ji+1 is closed or
vice versa. Here is an example of a possible ordering of the first few intervals/isolated
points, where 0 < x1 < x2 < · · · :

(0, x1] (x1, x2) x2 (x2, x3) [x3, x4) [x4, x5] . . .
We are now in a position to obtain a contradiction and hence complete the proof of

this result. Here is a summary of the key points that arise, under the assumption that f
has only a finite number of discontinuities (remembering that infinity does count as an
endpoint for an interval):

(a) The total number of endpoints of all the intervals contained in S is 2(2k + 2) =
4k + 4, which is a multiple of 4.

(b) The number of closed endpoints amongst all the intervals in S is even, say 2n
for some non-negative integer n (since, by (2), there will be equal contributions
from curve segments in the first and fourth quadrants). These 2n closed endpoints
correspond to 2n open endpoints from elements in S.

(c) The 2m isolated points in the graph of y = f (x) for x > 0 correspond to 4m open
endpoints from elements in S.

(d) Both the lower endpoint of J1 and the upper endpoint of J2k+2 are open.

From (b), (c) and (d) there must be 2n + 4m + 2 open endpoints amongst all the in-
tervals in S. The total number of endpoints in S is therefore 2n + (2n + 4m + 2) =
4(n + m) + 2, which is not a multiple of 4. This, however, contradicts (a), so our sup-
position that f has only a finite number of discontinuities must be false.

We now go on to show, constructively, that for each interval containing zero there
are in fact uncountably many solutions to f ( f (x)) = −x possessing only countably
many discontinuities such that all of these discontinuities lie within this interval. Let
c ∈ R with c > 0. For any 0 < ε < 1/

√
c we may construct a strictly increasing se-

quence {an} such that

1√
c

− ε < a1 <
1√
c

<
1

a1c
<

1√
c

+ ε and lim
n→∞ an = 1√

c
.

First we set f
(

1√
c

) = a1, f (a1) = − 1√
c , f

(− 1√
c

) = −a1, f (−a1) = 1√
c and f (0) = 0.

Next, for k ∈ N we define
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f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2k+1 if x = a2k

−a2k if x = a2k+1

−a2k+1 if x = −a2k

a2k if x = −a2k+1

and, with bi = 1/(ai c) for i = 1, 2, . . . ,

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b2k if x = b2k−1

−b2k−1 if x = b2k

−b2k if x = −b2k−1

b2k−1 if x = −b2k

Finally, for any values of x not included above, we set

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
cx if x > 1√

c

1
cx if 0 < x < 1√

c

1
cx if − 1√

c
< x < 0

− 1
cx if x < − 1√

c

.

This defines a function f that maps the real numbers onto the real numbers and
satisfies the equation f ( f (x)) = −x . Given any open interval containing zero we may,
by choosing sufficiently large c and sufficiently small ε, restrict the discontinuities of
f to lie within this interval. Furthermore, there are uncountably many values of c for
which this could be done.

Generalizing somewhat

It is also true that any function f : R → R satisfying the equation f ( f (x)) = a − x
necessarily has infinitely many discontinuities, and that for each interval contain-
ing a/2 there are uncountably many such functions possessing only countably many
discontinuities such that all of these discontinuities lie within this interval. To see
this, suppose that f (b) = c. Then f (c) = f ( f (b)) = a − b, f (a − b) = f ( f (c)) =
a − c and f (a − c) = f ( f (a − b)) = b. Thus the graph contains the points (b, c),
(c, a − b), (a − b, a − c) and (a − c, b). These points form the vertices of a square
whose center is at (a/2, a/2). The claim now follows from the results obtained in the
previous two sections, on noting that the graph of y = f (x) has rotational symmetry
of order 4 about the point (a/2, a/2).

We next give two examples of functions f : R → R that satisfy the equation
f ( f (x)) = −cx for c > 0. Let f (a) = b where a and b are positive real numbers
such that a < b. From the property f ( f (x)) = −cx , the points(

a(−c)n, b(−c)n
)

and
(
b(−c)n, a(−c)n+1

)
, n ∈ Z,

all lie on the graph of y = f (x). Suppose, for the time being at least, that c > 1, and
define the points A2m , B2m , A2m+1 and B2m+1 to have coordinates(

a(−c)m, b(−c)m
)
,

(
b(−c)m, a(−c)m+2

)
,

(
b(−c)m, a(−c)m+1

)
,

and
(
a(−c)m+2, b(−c)m+1

)
respectively, where m ∈ Z. Now let A2m B2m represent the line segment connecting
A2m and B2m , and containing A2m but not B2m . The line segment A2m+1 B2m+1 is defined
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similarly. It is easily checked that f induces a mapping from A2m B2m to A2m+1 B2m+1,
and from A2m+1 B2m+1 to A2(m+1) B2(m+1). Then, along with the point f (0) = 0, the
lines

A2m B2m and A2m+1 B2m+1, m ∈ Z,

give the graph of a function f satisfying all the requirements. An example of such a
graph is given in FIGURE 3. In this case a = 2, b = 3 and c = 2. There are several
things worth noting here:

1. All the line segments forming the graph of y = f (x) in quadrants 1 and 3 have the
same gradient, and similarly for the line segments in quadrants 2 and 4.

2. For any positive number t , there exist infinitely many disjoint intervals of the form
[s, s + t], where s ∈ R, such that f is continuous over each of these intervals.

3. For any ε > 0, f has infinitely many discontinuities on the interval (−ε, ε).

–100 –50 50 100
x

–100

–50

50

100
y

Figure 3 A typical ‘distorted windmill’ function

If a > b then we define the graph of an alternative function g(x), as follows. The
points D2m , E2m , D2m+1 and E2m+1 are defined to have coordinates(

b(−c)m, a(−c)m−2
)
,

(
a(−c)m, b(−c)m

)
,

(
a(−c)m−2, b(−c)m+1

)
,

and
(
b(−c)m, a(−c)m+1

)
respectively. Now let D2m E2m represent the line segment connecting D2m and E2m ,
and containing E2m but not D2m . The line segment D2m+1 E2m+1 is defined similarly.
Then, along with the point g(0) = 0, the lines

D2m E2m and D2m+1 E2m+1, m ∈ Z,

give the graph of a function g satisfying all the requirements. With a = 3, b = 2 and
c = 2 we obtain the graph shown in FIGURE 4. It is possible to obtain similar graphs
when 0 < c < 1.

We leave the reader to explore the functional equation f ( f (x)) = d − cx for the
possible existence of even stranger windmills and beyond.
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Figure 4 Another ‘distorted windmill’ function
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Summary In this article we consider the solutions of a particular functional equation and some generalizations.
This equation possesses non-trivial yet accessible solutions, and is rather appealing because of the way that
the enforced graphical symmetry of any solution implies that it must possess a certain non-obvious analytic
property. Indeed, a central theme here is this interplay of the visual with the analytic aspects of the problem. After
giving a brief historical overview of functional equations, we go on to study the general properties shared by
functions satisfying our particular equation, as well as specific solutions. Finally, solutions to a generalization of
the equation are obtained.
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Some celebrate 1638 as the date that marks the marriage of mathematics and physics.
That was the year Galileo published his Discorsi e Dimostrazione Matematiche intorno
a due Nuove Scienze, or, as we shall call it, the Two New Sciences. In that work Galileo
proves the law of free fall, familiar to us in the form x(t) = gt2/2. As a mathematical
relation, it describes how far an object would travel if it were uniformly accelerated
from rest: The distance traveled is proportional to the square of the time elapsed; the
proportionality constant g is not necessarily due to gravity and the direction is not
necessarily down. As physics, this law makes a bolder and more tangible statement:
This is how far an object released from your hand falls in time t (at least if it’s near the
earth and experiences no air resistance).

The mathematical aspect of this law has the longer history, dating back to the middle
ages. In this article, we compare Galileo’s mathematical treatment of uniform acceler-
ation to that of Nicole Oresme, a 14th century scholastic philosopher and mathemati-
cian. Whose mathematics we grasp more easily may come as a surprise.

Galileo’s law of free fall

The Two New Sciences is structured as a conversation held among educated friends
over a period of four days. The friends, named Simplicio, Salviati, and Sagredo, dis-
cuss the writings of a “wise author” (Galileo himself). Days 3 and 4 are dedicated to
the discussion of moving bodies, which they call moveables. On Day 3, the friends
discuss the wise author’s Theorem 1 and its corollary, Theorem 2, which together es-
tablish what we call the law of free fall [3, p. 165 ff.].

THEOREM 1. The time in which a certain space is traversed by a moveable in
uniformly accelerated movement from rest is equal to the time in which the same space
would be traversed by the same moveable carried in uniform motion whose degree of
speed is one-half the maximum and final degree of speed of the previous, uniformly
accelerated, motion.

THEOREM 2. If a moveable descends from rest in uniformly accelerated motion,
the spaces run through in any times whatever are to each other as the duplicated ratio
of their times; that is, are as the squares of those times.

Galileo was an accomplished draftsman who filled his works with many finely drawn
and instructive diagrams. FIGURE 1 is similar to that which accompanies his Theo-
rem 1. As we often do in the MAGAZINE, let’s think of this figure as a “proof without
words” and fill in the details. First, focus on the rectangle GABF and ignore the seg-
ment CD for now. When an object travels at a constant velocity v over an interval of
time of length t , the distance traveled is v · t . If we let v be the length of the base FB of
the rectangle GABF and let t be its height (as Galileo did), then the distance traveled

Math. Mag. 83 (2010) 24–32. doi:10.4169/002557010X479965. c© Mathematical Association of America
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is its area. Now imagine an object that starts from rest but accelerates at a constant rate
to a final velocity of v f at time t . We can model this scenario with the right triangle
ABE in FIGURE 1. Let v f be its base. If we again reason that the distance traveled is
the area of the figure, then that distance is v f · t/2. But now notice that if v = v f /2,
then v f · t/2 is exactly how far an object traveling at constant velocity v f /2 would
travel in time t . In Galileo’s words, a uniformly accelerated object travels as far as it
would have, had it been “carried in uniform motion whose degree of speed is one-half
the maximum and final degree of speed.” (Modern readers can, of course, prove the
same thing with calculus.)

E F B

D

C

I

G A

Figure 1 Galileo’s diagram, where vertical distances represent time and horizontal ones
represent velocity

To establish Theorem 2, we simply need to extend FIGURE 1 and count rectangles
at each tick of a clock. Take a look at FIGURE 2. At the first tick, there is one rectangle;
at the second tick, there are 3; at the third tick, there are 5, and so on. At the end of
n ticks, there are 1 + 3 + · · · + (2n − 1) = n2 rectangles. So at the end of t units of
time, the distance traveled is t2 times the amount traveled in the first unit of time.

t = 4

t = 3

t = 2

t = 1

Figure 2 A diagram for Theorem 2, Galileo’s law of free fall

It certainly is an intellectual treat to realize that such a basic physical law emerges
simply and beautifully from elementary geometry. Our inner Plato smiles. But why
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is something so simple a pivotal moment? At the time of Galileo, free fall was not
assumed to be an example of uniformly accelerated motion. In fact, uniform accelera-
tion itself had been correctly analyzed by medieval scholastics, as we will explain. It
was Galileo that first showed that free fall—the motion of a body that is dropped from
your hand—is indeed an example of uniformly accelerated motion. He did this with
his famous inclined plane experiments, which are discussed later in the Two New Sci-
ences. It is this link of mathematical theory to experimental verification that overturned
the then prevalent Aristotelian tenet that mathematics was too exacting to model the
complexity of nature. Within one hundred years, Newton would use the experimental
observations of Kepler (that planets have elliptical orbits) and the mathematical strides
of Descartes (the merging of algebra and geometry) to deduce the Universal Law of
Gravitation.

A closer look Galileo postulated the free fall law when he was a young professor
at the University of Padua around 1607, but he revisited the problem frequently over
his long career. It seems that he felt he needed a deeper mathematical proof. We find
that proof in the Two New Sciences, the culminating work of his career. So the very
simplicity of the arguments presented above prompts us to question whether our facile
deduction of Galileo’s law reflects his own thinking. Surely the geometry we invoked
was no hurdle for Galileo. So where is the nexus of proof for him? To gain some
insight, we turn to Galileo’s own words. They will sound strange to modern ears.
Please experience the strangeness and please refer to FIGURE 1 again.

Galileo’s Proof of Theorem 1. Let line AB represent the time in which the space
CD is traversed by a moveable in uniformly accelerated movement from rest at C.
Let EB, drawn in any way upon AB, represent the maximum and final degree of speed
increased in the instants of time AB. All the lines reaching AE from single points of the
line AB and drawn parallel to BE will represent the increasing speed after the instant A.
Next, I bisect BE at F, and I draw FG and AG parallel to BA and BF; the parallelogram
AGFB will [thus] be constructed, equal to the triangle.

Now if the parallels in triangle AEB are extended as far as IG, we shall have the
aggregate of all parallels contained in the quadrilateral equal to the aggregate of those
included in the triangle AEB, for those in triangle IEF are matched by those contained
in triangle GIA, while those in the trapezium AIFB are common. Since each and all
instants of time AB correspond to each point and all points of the line AB, from which
points the parallels drawn and included within the triangle AEB represent increasing
degrees of the increased speed, while the parallels contained within the parallelogram
represent in the same way just as many degrees of speed not increased but equable,
it appears that there are just as many momenta of speed consumed in the accelerated
motion according to the increasing parallels in triangle AEB, as in the equable motion
according to the parallels of the parallelogram GB. For the deficit of momenta in the
first half of the accelerated motion (the momenta represented by the parallels in the
triangle AGI falling short) is made up by the momenta represented by the parallels of
the triangle IEF.

It is therefore evident that equal spaces will be run through in the same time by
two moveables, of which one is moved with a motion uniformly accelerated from rest,
and the other with equable motion having a momentum one-half the momentum of the
maximum speed of the accelerated motion; which was [the proposition] intended.

The notion of area is not central to Galileo’s proof. For him, velocity was not a
quantity computed as quotient of distance and time. It was a basic primitive quality
of a moving thing, a quality that had a continuous spectrum of possible intensities. If
two objects in motion had velocities with unchanging intensities, distances traversed
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in equal times would be in proportion to their intensities, but that distance would not
be measured, computed, or quantified as velocity × time and so would not be quanti-
fied as the area of a rectangle. The issue of changing velocity was more complicated.
For Galileo and his contemporaries, the distance traveled by an object with changing
velocity is proportional to the total velocity accumulated, or as he says, the momenta
accumulated and consumed as it traveled. We do not have such a concept in modern
physics.

The key to Galileo’s argument comes in the second paragraph of the proof. It begins
with the assertion that the “aggregate of all parallels contained in the quadrilateral [is]
equal to the aggregate of those included in the triangle AEB.” To show that these ag-
gregates (infinite sets really) are equal, he establishes what we would call a one-to-one
correspondence between them: At each instant of the interval of time (represented by
the segment AB in FIGURE 1), we can match two intensities, the degree (or intensity)
of the speed of uniform motion and the degree of the speed of uniformly accelerated
motion. These intensities are represented by the horizontal lines drawn in FIGURE 1.
The aggregates are in one-to-one correspondence via the continuum of time “[s]ince
each and all instants of time AB correspond to each point and all points of the line
AB.” By comparing the horizontal extents of the intensities in each case, Galileo sees
that the excess of the intensities that lie within the top half of the rectangle but out-
side the triangle are matched by the excess of the intensities that lie within the bottom
half of the triangle but not the rectangle. In conclusion, there is just as much “speed
consumed” in the motion represented by the quadrilateral as that represented by the
triangle. Thus, for Galileo, the distances traveled are the same for both the motions.

Galileo also refers to “uniformly accelerated motion” as “naturally accelerated mo-
tion,” by which he means free fall. He finds it quite reasonable that nature should
employ uniform acceleration for free fall because “she habitually employs the first,
simplest, and easiest means” [3, p. 153]. But his contemporaries thought otherwise. So
Galileo brackets Theorems 1 and 2. He precedes them with a mathematical refutation
of the then current model of free fall and follows them with experimental evidence for
his model.

First, the refutation. In their on-going reading of the wise author’s words, the friends
learn of his (Galileo’s) assertion that the speed of an object dropped from rest increases
in proportion to the time elapsed. The speaker Salviati, who represents Galileo’s point
of view among the discoursing friends, must refute the view prevalent in Galileo’s time
that in free fall, velocity is proportional to the distance fallen rather than to the time
elapsed. Today, we would model the older view by the differential equation dx/dt =
cx where distance x is measured from the point of release and where c is a constant.
The solution is x(t) = Aect where A depends on the initial condition, x(0) = 0. Thus
A = 0 and the solution is x(t) = 0. No motion! The object stays put at the point of
release. (This is rather like Road-Runner running off a cliff before he notices it is a
cliff.) To dismiss this idea, Salviati first notes that in the case of uniform or constant
velocity, if velocity is proportional to the distance to be traversed, the time it takes
to travel “two braccia” or two arm-lengths would be the same as the time it takes to
travel “four braccia”. (If you travel 30 miles at 15 mph, it takes two hours. Keeping
the same 2 to 1 proportion, but going 60 miles at 30 mph, it still takes two hours.) He
extrapolates that argument to the case when velocity varies in proportion to distance
traveled. Here is Salviati’s (really Galileo’s) argument [3, p. 160]:

When speeds have the same ratio as the spaces passed or to be passed, those
spaces come to be passed in equal times; if the speeds with which the falling
body passed a space of four braccia were the doubles of the speeds with which it
passes the first two braccia as one space is double the other space, then the times
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of those passages are equal; but for the same moveable to pass four braccia and
two in the same time cannot take place.

Galileo makes a one-to-one correspondence between the intensities of the speeds that
occur during a free fall that drops a distance of 2 braccia with the intensities during
a fall that drops a distance 4 braccia. In the second case, each intensity is twice the
intensity of the first. So the total velocity is twice the first case, and hence the amount
of time it takes to go the double distance is the same amount of time as it takes to
go the smaller distance. Clearly impossible! (And Galileo anticipates the use of the
one-to-one correspondence used in the proof of Theorem 1.)

After he refutes the prevailing view of free fall, and after the presentation of the wise
author’s mathematical proof that, in naturally accelerated motion, distance is propor-
tional to the square of the time elapsed, Salviati brings in the experimental evidence,
Galileo’s famous inclined plane experiment [3, p. 169].

In a wooden beam or rafter about twelve braccia long, half a braccia wide, and
three inches thick, a channel was rabbeted in along the narrowest dimension,
a little over an inch wide and made very straight; so that this would be clean
and smooth, there was glued within it a piece of vellum, as much smoothed and
cleaned as possible. In this there was made to descend a very hard bronze ball,
well rounded and polished. . . . [We] noted the time that it consumed in running
all the way, repeating the process many times, in order to be quite sure as to
the amount of time, in which we never found a difference of even the tenth part
of a pulse-beat. . . . [We] made the same small ball descend only one-quarter of
this channel, and the time of its descent being measured, this was found to be
precisely one-half the other. . .

Galileo continues to elaborate, but our short quote is enough to verify the t2 law for
free fall. If x = t2 (with units chosen so that g = 2), then t = √

x . So the ball should
go a quarter of the way in half the time, which he verified. Galileo’s Proof of Theorem
1 and Salviati’s arguments give us an interesting historical perspective. With them,
Galileo laid the ground work for modern mathematical physics and its methodology:
He developed a mathematical theory for a physical phenomenon and confirmed it with
repeatable experiments. Yet he did so with physical concepts that are strange to us and
mathematical techniques that are strangely employed.

Nicole Oresme

Now we look into the thinking of one of Galileo’s medieval predecessors, Nicole
Oresme (pronounced Orezzmay), an extraordinarily forward-looking French scholas-
tic philosopher, who also addressed the issue of uniform acceleration. Oresme lived
and worked in the 14th century, the same century that brought us the poetry of Dante
and Chaucer, the art of Duccio and Giotto, the music of Guillaume de Machaut and
Francesco Landini, and the Black Death. It was a period of intense scholarship, cre-
ativity, and tragedy.

Oresme’s work, De configurationibus qualitatum et motuum or The Geometry of
Qualities and Motions, is a treatise on the use of geometry both to imagine (model)
and to compare qualities (aspects of an object) that can change in intensity. Velocity is
such a quality. When a quality (like velocity) has constant intensity over an extension
(in space or over an interval of time), Oresme called it uniform. If a quality changes in
intensity, it said to be difform. There are two ways to be difform. If change is uniform
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(as when velocity changes and acceleration is constant) then a quality is said to be
uniformly difform. Otherwise, it is said to be difformly difform. What wonderful termi-
nology! Oresme studies all three cases; we are interested in the quality of velocity as
it changes intensity uniformly over time—uniformly difform velocity.

Oresme models his concepts of change much as we would. The span of time over
which change occurs is represented by a line segment. The intensity of a quality at
a certain moment in time is represented by a line segment perpendicular to the time
interval. Different intensities at different times are modeled by line segments that have
heights in the same ratio as the intensities. Taking all the intensities at all moments of
time in a given interval, he observes that that their topmost points trace out a curve.
The quality as a whole is thus modeled by a two dimensional figure. A quality with
uniform or constant intensity is modeled by a rectangle and a uniformly difform motion
is modeled by a right triangle or trapezoid as in FIGURE 3a; difformly difform motions
are represented by the various other shapes as in FIGURE 3b.

Extension

Intensity

(a)

Extension

Intensity

(b)

Figure 3 Uniform and difform motions, where we interpret extension as time and inten-
sity as velocity

Here’s what Oresme said about his modeling process [4, p. 175]:

[S]omething is more quickly and perfectly understood when it is explained by
a visible example. Thus it seems quite difficult for certain people to understand
the nature of a quality that is uniformly difform. But what is easier to understand
than that the altitude of a right triangle is uniformly difform?. . . . [T]hen one
recognizes with ease in such a quality its difformity, disposition, figuration, and
measure.

Throughout his work, Oresme is concerned about how the mind conceptualizes. But
we are interested in the last word of the quote, measure (my italics). What Oresme is
interested in measuring (or at least comparing) is the “quantity of the quality.” How
much of a quality do you have? When applied to the quality of velocity, the quantity of
the quality is what Galileo would have referred to as the total velocity. Unlike Galileo,
Oresme measures by comparing areas [4, p. 405].
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The universal rule is this, that the measure or ratio of any two linear or surface
qualities or velocities is as that of the figures by which they are comparatively
and mutually imagined. . . . Therefore, in order to have measures and ratios of
qualities and velocities one must have recourse to geometry.

Here’s how Oresme stated and proved the Mean Velocity Law [4, p. 409], which is
equivalent to Galileo’s Theorem 1. (Oresme’s diagram is reproduced in FIGURE 4.
Note that the time interval is the bottom horizontal line.)

[Proposition] Every quality, if it is uniformly difform, is of the same quantity as
would be a quality of the same or equal subject that is uniform according to the
degree of the middle point of the same subject.

C

F

A D B

GE

Figure 4 Oresme’s simple diagram for the mean velocity law

[Proof] [L]et there be a quality imaginable by ABC, the quality being uni-
formly difform and terminated at no degree in point B. And let D be the middle
point of the subject line. The degree of this point, or its intensity, is imagined
by the line DE. Therefore, the quality which would be uniform throughout the
whole subject at degree DE is imaginable by the rectangle AFGB. . . . Therefore,
it is evident by the 26th [proposition] of [Book] I [of the Elements] of Euclid
that the two small triangles EFC and EGB are equal. Therefore the larger BAC,
which designates the uniformly difform quality, and the rectangle AFGB, which
designates the quality uniform of degree in the middle point, are equal. And this
is what has been proposed.

Oresme goes on to emphasize that his assertion applies to the quality of velocity and,
like Galileo, he assumes that distance traveled is directly proportional to total velocity.
So Oresme’s 14th-century mathematical approach is very familiar: When we find the
total distance traveled by integrating velocity over time, we find area.

A digression, just for fun Turning a few pages further in Oresme’s work [4, p. 413],
we find another intriguing and forward looking discussion of a diagram that serves as
a proof for the sum of an infinite series. (Have we found a medieval Euler?)

We would write the series that Oresme investigates as
∑∞

i=1 i/2i . He proves that its
sum is 2 via the diagram reproduced in FIGURE 5: Two unit squares in FIGURES 5a
and 5b are divided on the base at 1/2, 1/4, 1/8, etc. The second box is dismantled and
piled on the first as in FIGURE 5c, which has a total area of 2, the sum of the areas
of the two reassembled boxes. Now look at FIGURE 5d in which we have extended
the vertical lines from the base at positions 1/4, 1/8, etc. Notice how the boxes stack
up. Starting from the left, there is one rectangle of width 1/2. Then there are two
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rectangles, one on top of the other, of width 1/4; then three of width 1/8; then four of
width 1/16 , and so forth.

The total area of the two unit boxes (namely, 2) is thus represented as the sum
1/2 + 2/22 + 3/23 + 4/24 + · · · . As Oresme puts it, the total area must be four times
the area of the first part, that is, four times the area of the section labeled E in FIG-
URE 5b. (Modern readers can compute the sum via geometric series:

∑∞
i=1 i/2i as∑∞

j=1

∑∞
i= j 1/2i = ∑∞

j=1 1/2 j−1 = 2.)

A B A B

E F G

A B

E

F

G

A B

(a) (b) (c) (d)

Figure 5 Oresme’s proof without words

Oresme says, “A finite [in area] surface can be made as long as we wish, or as
high, by varying the extension without increasing the size.” We are acquainted with
this notion through convergent improper integrals such as

∫ 1
0

1√
1−x

dx . But Oresme is
really interested in how his observation about areas informs his theory of velocity. He
goes on to say [4, p. 415]:

In the same way, if some mobile were moved with a certain velocity in the first
proportional part of some period of time, divided in such a way, and in the second
part were moved twice as rapidly, and in the third three times as fast, and in the
fourth four times, and increasing successively to infinity, the total velocity would
be precisely four times the [total] velocity of the first part, so that the mobile in
the whole hour would traverse precisely four times what it traversed in the first
half of the hour. . . and yet it would be moved infinitely fast.

The notion of (instantaneous) velocity that is infinite is difficult to grasp even today.
Consider the motion defined by x(t) = 1 − √

1 − t . The total distance traversed in
one unit of time starting at t = 0 is x(1) = 1. The average velocity is therefore 1 but
instantaneous velocity is given by v(t) = 1/2

√
1 − t and limt→1 1/2

√
1 − t = +∞.

(When I asked a physicist about this, the response was, “We ignore the endpoints.”)
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Conclusion

When we look at how Galileo uses mathematics, he seems more remote than Oresme.
However, what separates Galileo and Oresme is deeper and dispels any idea that
Oresme is the more modern scientist. In Oresme’s work, motion and velocity are
treated as an application of a more general theory that offers a context for modeling
anything that could be considered to have intensity. To him, the model works equally
well for qualities such as whiteness, sweetness, and pain, nouns for which he had no
measure and therefore no recourse to experimentation [4, p. 211].

[O]ne quality of the body—say, its hotness—can be figured in one way, and
perhaps another quality of the same body, such as its whiteness, can be figured
in another way, and perhaps another of its qualities—possibly its sweetness—can
be figured in a still different way, and similarly for the other [qualities].

Galileo was a quantifier who adamantly insisted that theory be born out by experi-
ment. He did not deal with “qualities” and theories that could not be verified phys-
ically. On the other hand, he set the stage for the physics of “ideal” situations. For
instance, through his inclined plane experiment, he slowed the effects of gravity by
having his object travel down a ramp rather than fall straight down. On a ramp at an
angle θ degrees from the horizontal, x(t) = g sin(θ)t2/2. So on the vertically tilted
ramp (θ = 90◦), x(t) = gt2/2, the law of free fall. Further, he determined that, in so
far as his experimental results differed from his theoretical results, they differed be-
cause of air resistance and friction. He extrapolated to the ideal situation free of these
restrictions. Galileo took the leap of faith: natural motion could be modeled by mathe-
matics. Metaphysics (the theory of why things move) became physics (science of how
things move), an experimental science with mathematics both at its service and at its
helm.
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Since retiring I have been working with younger people, mostly ages 9–12. They tend
to find long division boring, so I show them that long division is interesting by studying
repeating decimals. Some good questions from the kids led me to look into the results
in this paper. Most of the results are known—as noted in the history section at the end
of this article—but they have not been readily accessible in a general form.

The first interesting repeating decimal is the decimal expansion for 1
7 = 0.142857.

I have known forever that the repeating portions of 2
7 , 3

7 , 4
7 , 5

7 , and 6
7 are all cyclic per-

mutations of 142857, but I only recently stumbled upon another property of 142857:
If you break its set of digits into 2 strings of equal length, then the numbers add to
999: 142 + 857 = 999. I will call this the 2-block property. The number 142857 also
has the 3-block property: 14 + 28 + 57 = 99. If we look at 3

7 = 0.428571, then again
428 + 571 = 999 but in this case 42 + 85 + 71 = 198. That is not quite as nice as
99, but 198 is twice 99 and we regard this as close enough to say that 3/7 has the 3-
block property. With this understanding, 1/7 and 3/7 also satisfy the 6-block property,
because the sums of their digits are multiples of 9.

These nice block properties are surprisingly common. In this paper, we give two
simple theorems that explain nearly all appearances of this phenomenon. First, we
illustrate with special cases, stating the theorems and a corollary along the way. Proofs
follow the examples, and help to clarify what is going on.

For any fraction, the length of the smallest repeating portion of its decimal is called
the period, for which we always write �. Thus the periods of t

7 for t = 1, 2, 3, 4, 5,
6 are all 6. We say that the fraction satisfies the m-block property if m divides � and,
when we break the repeating portion into m blocks of equal length k = �/m, the sum
of the m blocks is a string of k nines or an integer multiple of a string of k nines.
TABLE 1 contains some examples where the denominators are primes.

These illustrate the following corollary, which is a corollary to both Theorems 1 and
2 below. As we will see in the history section, the prime 487 is especially interesting
in our story.

COROLLARY. Consider a prime p ≥ 7, and let � be the period of t/p where 1 ≤
t < p. (Then � ≤ p − 1.) If m divides � where m > 1, then the m-block property holds
for t/p.

For m = 2, the sum of the two blocks, A and B, is exactly a string of nines. Just
add A and B in the standard way, working from right to left, and you will see that each
column adds to 9—no carrying. This property is sometimes referred to as the “nines
property.” In this case, the sum is exactly a string of nines. This is also true for 1/p for
m = 3; the numerator being 1 is crucial here as a glance at 3/7 shows. We explain this
after proving Theorem 2.

The m-block property holds for 1/n in many cases when n is not prime. See
TABLE 2 below. You’re invited to momentarily ignore the third column and verify
some of the claims in the table about m-block properties. The challenge is to see why
some m-block properties hold, while others don’t.

Math. Mag. 83 (2010) 33–45. doi:10.4169/002557010X479974. c© Mathematical Association of America
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TABLE 1

denominator � fraction m-block property holds for

7 6 1/7 = 0.142857 m = 2, 3, 6

7 6 3/7 = 0.428571 m = 2, 3, 6

13 6 1/13 = 0.076923 m = 2, 3, 6

13 6 11/13 = 0.846153 m = 2, 3, 6

17 16 1/17 = 0.0588235294117647 m = 2, 4, 8, 16

19 18 1/19 = 0.052631578947368421 m = 2, 3, 6, 9, 18

31 15 1/31 = 0.032258064516129 m = 3, 5, 15

31 15 11/31 = 0.354838709677419 m = 3, 5, 15

73 8 17/73 = 0.23287671 m = 2, 4, 8

487 486 1/487 = 0.0020533 · · · m = 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486

Do you see a pattern for when the m-block property holds? The key is to look at
k = �/m and see whether it is a multiple of any of the periods of the reciprocals of
the prime factors in the denominator. Those periods are listed in the third column of
TABLE 2. For example, for 77 = 7 · 11, the periods of 1/7 and 1/11 are 6 and 2,
respectively. For m = 2, 3 and 6, the corresponding values of k are 3, 2 and 1. Of these
k’s, only 2 is a multiple of 6 or 2, and the m-block property only fails for m = 3 where
k = 2. Here is the general theorem, which is Theorem 3 in Harold Martin’s 2007 paper
[24].

THEOREM 1. Let n = pa1
1 · · · par

r where the primes p j ≥ 7 are distinct. Let � be
the period of t/n, where 0 < t < n and t is relatively prime to n, so that the fraction
t/n is reduced. For each prime p j , we write �(p j ) for the period of 1/p j . If � = mk,
where m > 1 and k is an integer, and if none of the periods �(p j ) divides k, then t/n
has the m-block property.

TABLE 2

m-block property

denominator � �(p j)′s fraction holds for fails for

77 = 7 · 11 6 6, 2 1/77 = 0.012987 m = 2, 6 m = 3

91 = 7 · 13 6 6, 6 1/91 = 0.010989 m = 2, 3, 6 no m

143 = 11 · 13 6 2, 6 19/143 = 0.132867 m = 2, 6 m = 3

259 = 7 · 37 6 6, 3 19/259 = 0.073359 m = 3, 6 m = 2

407 = 11 · 37 6 2, 3 19/407 = 0.046683 m = 6 m = 2, 3

1001 = 7 · 11 · 13 6 6, 2, 6 151/1001 = 0.150849 m = 2, 6 m = 3

803 = 11 · 73 8 2, 8 1/803 = 0.00124533 m = 8 m = 2, 4

451 = 11 · 41 10 2, 5 1/451 = 0.0022172949 m = 10 m = 2, 5

1147 = 31 · 37 15 15, 3 1/1147 = 0.000871839581517 m = 3, 15 m = 5

1241 = 17 · 73 16 16, 8 1/1241 = 0.0008058017727639 m = 4, 8, 16 m = 2
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All of the examples in TABLE 2 are easy to verify directly. All of the m-block
properties that hold, hold by Theorem 1. Each failure in TABLE 2 occurs when at
least one of the �(p j )’s divides k. Nevertheless, we are morally obligated to check
the failures, because the converse of Theorem 1 is not true: The m-block property
can hold, even if some period �(p j ) divides k. Here is the simplest example: For n =
253 = 11 · 23 and � = 22 = mk where m = 11 and k = 2, we have

1

253
= 0.0039525691699604743083,

the 11-block sum is 594 = 6 · 99, and yet k = 2 is a multiple of �(11) = 2. A class of
examples follows the proof of Theorem 2.

Why do we restrict primes to be bigger than 5? First, avoiding factors of 2 and 5 in
the denominators is a major simplification, because they are also factors of 10. Second,
we can still get to these cases indirectly. If n is divisible by 2 or 5, then the repeating
portion of t/n also occurs as the repeating portion of another fraction t∗/n∗ where 2
and 5 are not factors of n∗. Consider, for example, 17/280. Since 280 = 23 · 5 · 7, to
eliminate the 2’s and 5 in the denominator, we multiply the fraction by 103 and obtain

103 · 17

280
, which reduces to

425

7
= 60 + 5

7
= 60.714285.

Therefore 17
280 = 0.060714285, and the repeating portion of the decimal expansion is

the same as for 5/7. For these reasons, we assume that n is relatively prime to 10.
We also avoid allowing 3 as a factor of the denominator, because the block property

involving nines rarely holds in this case, essentially because 3 divides 9. Moreover, if
3 is a factor of n in Theorem 1, the hypotheses never hold: k is always a multiple of
�(3) = 1. There are some patterns, though, if the denominator has at most two factors
of 3; consider

23

117
= 23

32 · 13
= 0.196581 and

65

219
= 65

3 · 73
= 0.29680365.

But this is another story. We do not allow multiples of 3 in the denominator, since
the extra complications tend to obscure the main ideas of this article.

We are now ready to address denominators that are powers of a prime. We avoided
these fractions in TABLE 2, in part because they have long periods. For prime powers,
the following theorem gives easily-checked conditions that are equivalent to the m-
block property.

THEOREM 2. Consider a prime power pa where p ≥ 7, and consider an integer
t where 0 < t < pa and t is relatively prime to p. Let � be the period of t/pa and
suppose � = mk where m > 1 and k is an integer. The following are equivalent:

(a) The m-block property holds for t/pa.

(b) m is not a power of p.

(c) The period �(p) of 1/p does not divide k.

TABLE 3 gives examples where the denominators are powers of primes and the
block property fails. Note that, in each case, neither (b) nor (c) in Theorem 2 holds,
since m is a power of p and �(p) divides k.
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TABLE 3

denominator � fraction m k �(p) m-block sum

49 = 72 42 1/49=0.020408163265307 · · · 7 6 6 3,142,854

121 = 112 22 1/121 = 0.00826446280 · · · 11 2 2 504

169 = 132 78 1/169 = 0.005917 · · · 13 6 6 6,076,917

343 = 73 294 1/343 = 0.002915 · · · 7 42 6 · · · 77,548

343 = 73 294 1/343 = 0.002915 · · · 49 6 6 24,442,833

The last column in TABLE 3 shows how uninteresting the m-block sums can be.
TABLE 4 lists some examples where the m-block property holds for 1/pa .

TABLE 4

denominator � fraction m-block property holds for

49 = 72 42 1/49 = 0.020408163265307 · · · m = 2, 3, 6, 14, 21, 42

121 = 112 22 1/121 = 0.00826446280 · · · m = 2, 22

169 = 132 78 1/169 = 0.0059171597 · · · m = 2, 3, 6, 26, 39, 78

343 = 73 294 1/343 = 0.002915 · · · m = 2, 3, 6, 14, 21, 42, 98, 147, 294

237,169 = 4872 486 1/237169 = 0.000004216 · · · m = 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486

Midy’s Theorem

The 2-block property for fractions with prime denominators is the earliest published
result, and it is called Midy’s Theorem [25, 1836]. With prime denominator, all that is
required is that � be even. Theorem 2 shows that Midy’s 2-block property also holds
for powers of primes p ≥ 7, since 2 is not a power of p. Theorem 1 asserts that Midy’s
2-block property holds for n = pa1

1 · · · par
r provided �/2 is not a multiple of any of the

�(p j )’s. TABLE 2 gives four simple examples where Midy’s 2-block property holds
and five where it fails. Similar remarks apply to the 3-block property, which has re-
ceived some attention.

Jones and Pearce [18] take a different and interesting approach using fractal-like
“graphical analysis graphs” of fractions, which are based on decimal expansions to
various bases. Under our general hypotheses (in Theorem 1), t/n satisfies Midy’s 2-
block property if and only if the graphical analysis graph is rotationally symmetric in
base 10. This follows from Theorem 3 in [18] and our Lemma 3 below.

EXERCISE 1. Prove Theorem 1 for the case m = � and k = 1.

EXERCISE 2. With the notation as in Theorem 1, show that if � = 2k and k is an
integer, then t/n has Midy’s 2-block property if and only if none of the periods �(p j )

divides k. See Theorem 8 in [24].

Now we prepare for the proofs of Theorems 1 and 2.
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Modular arithmetic

The basics of modular arithmetic in Z(n) = {0, 1, 2, . . . , n − 1} will be our main tool.
What we need can be found in most number theory books. See, for example, Chapter
2 in [27] on congruences in Z(n), or Chapters 3 and 9 in the new book, [9]. Much less
sophisticated treatments, such as found in §14.3 of [16], Chapter 4 in [4] or sections 4
and 9 in [7], are sufficient for this article. The group U(n) of units, described below, is
defined on page 747 of [16], right after Example 16.4 about U(9).

Here’s a quick overview. For integers a and b, we will write a ≡ b (mod n) if their
difference is divisible by n, i.e., if they have the same remainders when they are divided
by n. The sum or product in Z(n) is the remainder of the ordinary sum or product
when it’s divided by n. For example, 4 + 5 = 2 and 4 · 5 = 6 in Z(7), since 4 + 5 ≡
2 (mod 7) and 4 · 5 ≡ 6 (mod 7). Similarly 8 + 11 = 4 and 8 · 11 = 13 in Z(15), since
8 + 11 ≡ 4 (mod 15) and 8 · 11 ≡ 13 (mod 15).

In many ways, modular arithmetic is very similar to the arithmetic of integers, but
there are at least two important differences. In Z(n), ab = 0 need not imply that either
a = 0 or b = 0, unless n is prime. For example, 9 · 5 ≡ 0 (mod 15). So, we have to be
careful not to slip into using this property, unless n is prime of course.

On the positive side, in many Z(n), the numbers 1 and its negative n − 1 are
not the only numbers with multiplicative inverses. Numbers with inverses are also
called units, so we write U(n) for the set of numbers in Z(n) that have inverses.
U(n) consists exactly of the nonzero numbers in Z(n) that are relatively prime to n.
It is a group and is called the group of units; see Theorem 2.47 (page 121) in [27].
This implies that U(n) is closed under multiplication (modulo n). As an example,
U(15) = {1, 2, 4, 7, 8, 11, 13, 14}. The inverses of elements in U(15) can be seen from
the extended identity: 2 · 8 ≡ 42 ≡ 7 · 13 ≡ 112 ≡ 142 ≡ 1 (mod 15). For a prime p,
we have U(p) = Z(p) \ {0}; for example, U(7) = {1, 2, 3, 4, 5, 6} and the inverses in
Z(7) can be read from 2 · 4 ≡ 3 · 5 ≡ 62 ≡ 1 (mod 7).

Long division

Let’s now discuss how we calculate t/n using the division algorithm. As usual, we
assume that 0 < t < n and that the fraction t/n is reduced, so that t and n are relatively
prime and t is in U(n).

We write r0 for t , so r0 is an honorary remainder at the beginning of the process. The
standard division algorithm provides digits d1, d2, d3, . . . (so that t/n = 0.d1d2d3 · · ·)
and remainders r1, r2, r3, . . . satisfying

d j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and r j ∈ Z(n)

for all j = 1, 2, 3, . . . . Both d j and r j are determined by r j−1 and n. First, d j is the
integer part of 10 · r j−1/n, and then r j is given by r j = 10 · r j−1 − d j n. Observe that
r j = 10 · r j−1 (mod n), from which it follows, by induction, that

r j ≡ t · 10 j (mod n) for all j.

Periods of t /n

Here are some well-known facts about the periods of decimal fractions.

LEMMA 1. Suppose that 2 and 5 are not divisors of n, let � be the period of 1/n,
and consider t in U(n).



38 MATHEMATICS MAGAZINE

(a) The period � of 1/n is also the period of t/n for all t ∈ U(n).

(b) The repeating portions of the decimal expansions for t/n are purely periodic; that
is, they start at d1.

(c) The period � for t/n is the smallest positive integer � satisfying 10� ≡ 1 (mod n).
Thus 10k ≡ 1 (mod n) if and only if k is a multiple of �.

Proof. (a) The period � of 1/n is the smallest number � such that r j+� = r j for
some j . We’ll write i for the smallest value of j such that r j+� = r j . Therefore all
r0, r1, . . . , ri+�−1 are distinct and ri+� = ri . Let s j be the corresponding remainders for
t/n. Then

s j ≡ t · 10 j (mod n) ≡ t · r j (mod n)

for each j . Since U(n) is closed under multiplication (modulo n), and since t and the
prime factors of 10 j are in U(n), we see that the remainders r j and s j are also in U(n).
On the group U(n), the map r → t · r (mod n) is one-to-one, so i is the smallest integer
so that si+� = si and s0, s1, . . . , si+�−1 are distinct.

(b) We want to show that i in the proof of part (a) equals 0. It suffices to show this
for 1/n. We have 10i ≡ 10i+� (mod n), and since 10i has an inverse (modulo n), this
implies that 100 ≡ 100+� (mod n). Since i was minimal, i must be 0.

(c) follows from the proof of part (b).

Part (a) of Lemma 1 is implicit in Leavitt’s papers [21, 1967] and [22, 1984], and
part (c) is Theorem 1 in Leavitt’s paper [22, 1984]. All of Lemma 1 follows immedi-
ately from Theorem 135 in Hardy & Wright’s Number Theory book [17].

The following fact, an easy consequence of Lemma 1(c), is helpful for determining
the period of t/n. If n = pa1

1 · · · par
r , where the primes p j are distinct and do not

include 2 or 5, then the period of 1/n is the least common multiple of the periods of
1/p

a j
j , taken over j = 1, . . . , r . (The periods for 1/pa , where p is prime, are described

in Lemma 4.)

Two lemmas

As always t ∈ U(n), 2 and 5 are not factors of n, and � = mk where m > 1. The re-
peating part of the decimal expansion for t/n, namely d1d2 · · · d�, breaks into m con-
secutive blocks of integers, each of length k: A1, A2, . . . , Am . Thus A1 = d1d2 · · · dk ,
A2 = dk+1dk+2 · · · d2k , etc., and Am = d(m−1)k+1 · · · dmk . (Here, juxtaposition denotes a
string of digits, not multiplication. Also, we refer to the strings as integers, which we
can sum, even if they begin with some zeros.)

LEMMA 2. The following statements are equivalent and, when they hold, they all
hold for the same integer K , which satisfies K ≤ m − 1.

(a) A1 + A2 + · · · + Am = K (10k − 1). (Note that each integer being added has
k digits and 10k − 1 is a string of k nines, so this is the m-block property for
t/n.)

(b) A1 A2 · · · Am + A2 A3 · · · Am A1 + · · · + Am A1 · · · Am−1 = K (10� − 1). (Note that
each integer being summed here has � digits and that 10� − 1 is a string of �

nines.)

(c) 0.A1 A2 · · · Am + 0.A2 A3 · · · Am A1 + · · · + 0.Am A1 · · · Am−1 = K . (These are re-
peating decimals; for example, 0.A1 A2 · · · Am is exactly t/n.)
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Proof. Let A, B, and C be the sums in parts (a), (b), and (c), respectively.
(a) ⇐⇒ (b). Since

A1 A2 · · · Am = Am + Am−1 · 10k + Am−2 · 102k + · · · + A1 · 10(m−1)k,

with similar sums for A2 A3 · · · Am A1, etc., we see that

B = A + A · 10k + A · 102k + · · · + A · 10(m−1)k

= A(1 + 10k + 102k + · · · + 10(m−1)k) = A · 10km − 1

10k − 1
= A · 10� − 1

10k − 1
.

It follows that B = K (10� − 1) if and only if A = K (10k − 1).
(b) ⇐⇒ (c). We have

0.A1 A2 · · · Am = A1 A2 · · · Am

10� − 1
,

with similar numerators for the other decimals. Summing over all the decimals yields

C = A1 A2 · · · Am + A2 A3 · · · Am A1 + · · · + Am A1 · · · Am−1

10� − 1
= B

10� − 1
,

so that B = K (10� − 1) if and only if C = K .

LEMMA 3. The m-block property holds for each t/n if and only if

1 + 10k + 102k + · · · + 10(m−1)k ≡ 0 (mod n).

Proof. Recall that (a) of Lemma 2 is the m-block property. We first assume that
1 + 10k + 102k + · · · + 10(m−1)k ≡ 0 (mod n) and prove (c) of Lemma 2. Note that

t

n
= r0

n
= 0.d1d2 · · · d� = 0.A1 A2 · · · Am .

From the long division algorithm it’s evident that

r1

n
= 0.d2d3 · · · d�d1,

r2

n
= 0.d3 · · · d�d1d2,

etc., and that

rk

n
= 0.dk+1dk+2 · · · dk = 0.A2 · · · Am A1.

In general, for 0 ≤ j ≤ m − 1, we have

r jk

n
= 0.d jk+1d jk+2 · · · d jk = 0.A j+1 · · · A j−1 A j .

To show that the sum of the repeating decimals is an integer, it suffices to show that

t + rk + r2k + · · · + r(m−1)k

n
is an integer.

Since r jk ≡ t · 10 j k (mod n), it suffices to show

t · (1 + 10k + 102k + · · · + 10(m−1)k) ≡ 0 (mod n),
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and this follows from

1 + 10k + 102k + · · · + 10(m−1)k ≡ 0 (mod n),

so that (c) of Lemma 2 holds.
The steps in the proof are reversible: if t/n satisfies the m-block property for some

t in U(n), then

t · (1 + 10k + 102k + · · · + 10(m−1)k) ≡ 0 (mod n),

and since t and n are relatively prime, this implies

1 + 10k + 102k + · · · + 10(m−1)k ≡ 0 (mod n).

It follows from the proof of Lemma 3 that if some t/n has the m-block property,
then all t/n do, for t in U(n). (Lemma 3 is given on page 92 in Shrader-Frechette [32,
1978].)

Proof of Theorem 1

By Lemma 3, it suffices to show

1 + x + x2 + · · · + xm−1 ≡ 0 (mod n),

where x = 10k . Note that xm ≡ 10km ≡ 10� ≡ 1 (mod n), so that xm − 1 ≡ 0 (mod n).
Fix p j . Since n divides xm − 1, we have that

p
a j
j divides xm − 1 = (x − 1)(1 + x + x2 + · · · + xm−1).

By hypothesis, k is not a multiple of �(p j ), so x = 10k �≡ 1 (mod p j ) by Lemma 1(c).
In other words, p j does not divide x − 1. It follows that

p
a j
j divides 1 + x + x2 + · · · + xm−1.

This is true for all j , so n divides 1 + x + x2 + · · · + xm−1; hence

1 + x + x2 + · · · + xm−1 ≡ 0 (mod n).

Note that a special case of Theorem 1 is the key implication (c) �⇒ (a) of Theo-
rem 2. To complete the proof of Theorem 2, we need to know more about periods of
prime powers.

Periods of prime powers

Dickson [6, page 164] credits Lemma 4 below to Thibault [34, 1843]. It was proved
by Prouhet [28, 1846] and again by Muir [26, 1875]. Since the proof does not seem
readily accessible or all that simple, I provide a proof here, starting with a lemma from
Muir [26].

MUIR’S LEMMA. If p ≥ 3 is prime and M, n and a are positive integers, then

M ≡ 1 (mod pa) if and only if M pn ≡ 1 (mod pa+n).



VOL. 83, NO. 1, FEBRUARY 2010 41

Proof. The first implication is easy. If M ≡ 1 (mod pa), then M − 1 = r pa for
some integer r , and

M p − 1 = (r pa + 1)p − 1 = p(r pa) +
p∑

k=2

(
p

k

)
(r pa)k .

Now pa+1 divides each term on the right, so M p ≡ 1 (mod pa+1). Now apply induction
on n. Note that p doesn’t need to be prime for this implication.

For the harder implication, it suffices to prove that M p ≡ 1 (mod pa+1) implies
M ≡ 1 (mod pa), for then

M pn ≡ 1 (mod pa+n) ⇒ M pn−1 ≡ 1 (mod pa+n−1)

⇒ · · · ⇒ M p ≡ 1 (mod pa+1) ⇒ M ≡ 1 (mod pa).

So, suppose M p ≡ 1 (mod pa+1), and let y = M − 1. It suffices to prove that y ≡
0 (mod pa). We have

M p − 1 = (y + 1)p − 1 =
p−1∑
k=1

(
p

k

)
yk + y p.

Since p is prime, p divides each
(p

k

)
for 1 ≤ k ≤ p − 1, and so p divides every term on

the right-side of the equality except possibly y p. But since p divides M p − 1, we see
that p divides y p too. Hence p divides y itself. Now let b ≥ 1 be the biggest exponent
so that pb divides y. If b ≥ a, then y ≡ 0 (mod pa), and we’re done.

So assume 1 ≤ b ≤ a − 1. Then y = pbr where r is relatively prime to p, and we
can write

M p − 1 = (y + 1)p − 1 = (pbr + 1)p − 1

= p(pbr) +
(

p

2

)
(pbr)2 +

p∑
k=3

(
p

k

)
(pbr)k .

Since p divides
(p

2

)
and 2b + 1 ≥ b + 2, pb+2 divides

(p
2

)
(pbr)2. Since b + 2 ≤

a + 1 and M p ≡ 1 (mod pa+1), pb+2 divides M p − 1. Thus pb+2 divides every term in
the last displayed formula except for p(pbr), and this is a contradiction.

Note The last paragraph of the last proof doesn’t work if p = 2. In fact, N 2 ≡
1 (mod 2a+1) does not imply N ≡ 1 (mod 2a). Consider N = 7 and a = 3, or N = 31
and a = 5.

In Lemma 4, we’ll write �(pa) for the period of 1/pa .

LEMMA 4. For a prime p not equal to 2 or 5, and for a ≥ 1, we have �(pa) =
ps�(p) for some s ≤ a − 1. In fact, if w is the largest power of p such that �(pw) =
�(p), then �(pa) = �(p)pa−w for a > w.

Proof. Since 10�(p) ≡ 1 (mod p), the easy implication in Muir’s Lemma (with M =
10�(p)) gives 10�(p)pa−1 ≡ 1 (mod pa). Thus �(pa) divides �(p)pa−1, by Lemma 1(c).
Now, 10�(pa) ≡ 1 (mod pa) forces 10�(pa) ≡ 1 (mod p), so �(pa) is a multiple of �(p),
again using Lemma 1(c). Since �(p) is relatively prime to p, being less than p, we see
that �(pa) = �(p)ps for some s ≤ a − 1.

Now suppose �(pw) = �(p) and �(pw+1) > �(p). By the preceding paragraph,
�(pa) = �(p)ps for some s ≤ a − 1, and we want to show that s = a − w when
a > w. Since 10�(p) ≡ 1 (mod pw), the easy Muir implication (with a = w) gives
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10�(p)pn ≡ 1 (mod pn+w) and so (with n = a − w), we see that 10�(p)pa−w ≡ 1
(mod pa). Thus �(p)pa−w must be a multiple of �(p)ps , and so s ≤ a − w. Now
assume that s < a − w for some a > w. Then 10�(p)ps ≡ 1 (mod pa) and the harder
Muir implication gives 10�(p) ≡ 1 (mod pa−s). Since a − s ≥ w + 1, we conclude
10�(p) ≡ 1 (mod pw+1), so that �(pw+1) ≤ �(p), contrary to our supposition about w.

As noted after Theorem 9 in [22, 1984], w is almost always 1, though p = 3, p =
487 and p = 56,598,313 are exceptions where w = 2. In 1984, that was all that was
known, though w was known for all primes less than 300 million.

Proof of Theorem 2

First, we observe that the implications (b) ⇐⇒ (c) follow immediately from Lemma 4:
Since � = ps�(p) for some s ≥ 0, mk = ps�(p), so m is a power of p if and only if k
is a multiple of �(p).

Next, the implication (c) �⇒ (a) is a special case of Theorem 1.
Finally, suppose that (a) holds, and assume (b) and (c) fail. By Lemma 3, we have

1 + x + · · · + xm−1 ≡ 0 (mod pa),

where x = 10k . Since (c) fails, k is a multiple of �(p). Thus 10k ≡ 1 (mod p) by
Lemma 1(c), so p divides x − 1. Since xm − 1 = (x − 1)(1 + x + · · · + xm−1) and
pa divides the sum, pa+1 divides xm − 1, so that xm ≡ 1 (mod pa+1). Since (b) fails,
m = pu for some u ≥ 1. Therefore,

x pu ≡ 1 (mod pa+1).

By Muir’s Lemma, we obtain

x pu−1 ≡ 1 (mod pa) or 10kpu−1 ≡ 1 (mod pa).

Since kpu−1 < kpu = km = �, this contradicts the fact that � is the minimal power of
10 equivalent to 1 mod (pa). We conclude that (a) implies (b) and (c).

Theorem 2 assures us that the 2-block and 3-block properties always hold for 1/pa ,
p ≥ 7. As promised after our statement of the Corollary, we now explain why the 3-
block sum is exactly a string of nines for 1/pa . This is the case in Lemma 3’s proof
where t = 1 = r0. Then 1 + rk + r2k ≤ 1 + (pa − 1) + (pa − 1) = 2pa − 1, so the
sum must be pa . This implies that, in this case, the constant K in Lemma 2 is equal
to 1.

An extension of Theorem 1

EXERCISE 3. With the notation of Theorem 1, show that the m-block property
holds provided that, for each prime p j , either (i) �(p j ) does not divide k, or else (ii)
�(p j ) divides k, the exponent a j = 1, and p j divides m.

This extension is an endless source of examples of the m-block property not covered
by Theorem 1. As noted after first stating Theorem 1, the simplest one involves n =
11 · 23 = 253. The most complicated one that I’ve also verified directly is for n =
11 · 892 = 87,131 where � = 3916, m = 979, and k = 4. The 979-block sum is 488 ·
9999.
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Some history

Periods of decimal expansions of fractions were studied extensively in the latter half
of the 1700s; see [3]. One project was the creation of tables and another involved
theoretical questions such as the calculation of the periods. The Corollary for m = 2
and 1/p, known as Midy’s theorem, implies that the digits of the second half of the
decimal expansion for 1/p, p a prime, can be calculated instantly from the first half,
provided the period is even. C. F. Hindenburg used this fact, at least when the period
is p − 1, to simplify calculations of such decimal expansions. He communicated this
idea to J. H. Lambert in December 1776 after he learned from Lambert about the
connection between periodic decimal expansions and Fermat’s Little Theorem.

Working in isolation, Henry Goodwyn [14, 1802] was another prodigious calcula-
tor who also knew about this application of Midy’s theorem. Related problems were
addressed by Lambert, Jean Bernoulli, John Robertson, and others. Then in 1793, 16-
year-old C. F. Gauss [11] learned about the problems and, by 1797–1801, he had solved
most of them based on his new work on the foundations of number theory.

Even though the Corollary for m = 2 and 1/p was known at least as far back as
1776 (Hindenburg), it is known as Midy’s theorem because of the pamphlet [25, 1836],
and this label appears in the titles of the articles [12], [23], and [24]. See Dickson [6,
page 163] for a very brief summary of what Midy did. Perhaps Midy didn’t give a
convincing proof, since Dickson states that Lafitte [20, 1846] provided a proof.

Dickson [6, pp. 161–173] gives a complete history of the study of periodic decimals
from 1770 to 1891. A short useful history is given in Shrader-Frechette [32], whose
modern references begin with R. E. Green [15, 1963] who “considered only reciprocals
of primes, but seems to be the first person since Midy to examine the notion of breaking
the period into several blocks.” Here we add to these histories, with a focus on the
results in our paper.

After the turn of the 19th century, Midy’s theorem seems to have been forgotten
until the 1960s, though in the problems section of the 1912 American Mathematical
Monthly E. B. Escott [10] states the theorem, asks for a proof and asks for what other
fractions the result holds. Neither the problem posed, nor any of the three solutions
published, mention Midy.

Theorem 2 of Leavitt’s paper [21, 1967] gives a proof of Midy’s theorem close
in spirit to our proofs. Both of his papers, [21] and [22, 1984], have lots of results
related to Theorem 2. See, especially, his Theorems 2, 10, and 11 in [22]. Maurice
Shrader-Frechette’s paper [32, 1978] is full of interesting facts, including a version
of Theorem 1. Lemma 3 and related ideas are also (somewhat hidden) in the paper.
This paper has been under-appreciated, because of its unique terminology and notation
(especially for the purposes of our presentation) and because its essay format makes
it difficult to infer precise theorems and proofs. Another related article is Ecker [8,
1983].

Our Theorem 1 is explicitly stated (and proved) in Theorem 3 of Harold Martin’s
article [24, 2007]. Moreover, his Theorem 8 characterizes n for which 1/n satisfies
Midy’s 2-block property.

Several recent papers contain special cases of the results in our paper. Theorem 1
in Dan Kalman’s very nice paper [19, 1996] is a special case of our Theorem 2. Brian
Ginsberg [12, 2004] provides a proof of the Corollary for m = 2, which is the same
as that in [33, 2003]. He goes on to prove the result for m = 3 and 1/p. Theorem 3 in
Joseph Lewittes’ paper [23, 2006] is a special case of our Theorem 2, and his Theorem
4 is a characterization related to our Theorem 1. The Corollary is stated for 1/p in
Jane Arledge and Sarah Tekanski’s recent article [1, 2008]. They also obtain related
results for 1/p and 1/p2.
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Finally, we give a little more history regarding the periods of pa . On pages 294–295
of the book [5, 1852], Desmarest states that if p < 1000 is a prime, and if p �= 3 and
�= 487, then the period for 1/p2 is p�(p) where �(p) is the period of 1/p. According
to Dickson, Shanks [29, 1874] stated that the period of 1/pa is pa−1�(p) for p > 5,
without mentioning 487. Perhaps as penance, in [30, 1877], for p = 487 he verified
that 1/p2 has the same period as 1/p, namely 486. He gave two arguments and avoided
giving the full decimal expansions. Glaisher [13, 1878] gave the full decimal expan-
sions for 1/p and 1/p2 (where p = 487 and �(p) = 486), thus verifying Desmarest’s
suggestion that 487 is an exceptional prime. He lamented that Desmarest didn’t show
his work: “These words and others distinctly imply that 3 and 487 are the only ex-
ceptions to the general rule up to 1000. In order to establish this and to find that 487
was an exception, Desmarest must have performed the divisions (or employed some
equivalent process); but it seems strange that if he had actually performed this heavy
work he should not have stated the fact explicitly. On the other hand, I have been able
to find no allusion to the property of the number 487 prior to the date of Desmarest’s
work; and it is scarcely to be supposed that Desmarest would adopt so important a
statement as that quoted above without giving his authority.”

Acknowledgment Many thanks to Rod Nillsen, Bill Kantor, and Dick Koch for help and encouragement.
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The three pile trick Hold a deck of cards face down and deal 27 cards face up in
rows of three, creating three piles each nine high. Overlap the cards in each pile so that
your audience can see the values of the cards and so that you can easily pick them up
while preserving their order.

Ask a spectator to think of one of the cards, remember it, and tell you which pile
it’s in. Announce that you will magically move her card to the middle of the deck.

Pick up the three piles, turning them over so that they are face down, quietly making
sure that the pile containing the chosen card is in the middle. Accompany this action
by any patter you choose.

Do this twice more, each time putting the chosen pile in the middle. Then count out
the deck to the middle card and turn it over, to your audience’s surprise and applause.

I found this classic trick in Rouse Ball [11, p.138] while searching for self-working
magic that depends on mathematics rather than dexterity. I have taught it to a fourth
grade mathematics club and to precocious first graders. Writing this paper led me to
lots of other references, starting with Gardner [4]. You can find several discussions
on the internet [2],[10]; Bogomolny [1] provides a Java applet. The trick is named
for Joseph Diaz Gergonne (1771–1859), who first published an analysis in Annales de
Mathématiques, the journal he founded [5, iv, 1813–1814, pp. 276–284]. Mathemati-
cians regularly return to the problems it raises, sometimes rediscovering or reproving
theorems known to previous authors—for example, Dickson in 1895 in the first vol-
ume of the Bulletin of the American Mathematical Society [3] and Harrison, Brennan
and Gapinski much more recently in Discrete Applied Mathematics [6]. The treatment
here explains the trick as a special case of the radix sorting algorithm from computer
science.

Base three arithmetic Most discussions of the trick go on to describe a generaliza-
tion that clearly depends on base three arithmetic.

Ask the spectator where she wants you to make her chosen card appear in the deck.
Tell her that for your magic to succeed she must start counting at 0, not at 1—so the
first card is the 0th and the last is the 26th.

Expand the chosen position as a three digit number in base 3. Read the digits from
right to left as you pick up the piles and turn them from face up to face down, using
the appropriate digit to determine the position of the chosen pile. For example, if the
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target position is 15 = 1203, the first time the chosen pile goes on top (none above it),
the second time on the bottom (two above it), the third time in the middle (one above
it, one below).

Now count out the face down deck, starting from 0, and turn over the spectator’s
card at number 15.∗

Because the count starts at 0 the middle card in the deck is number 13 = 1113.
Those three 1’s tell you why the chosen pile always goes in the middle in the orig-
inal version of the trick. In Gergonne’s analysis, repeated by Rouse Ball and others,
counting starts at 1. Then the middle card is at number 14, and the discussion of the
generalization is cluttered with mysterious 1’s to be added and subtracted.† Counting
from 0 makes the connection with base three arithmetic much clearer, and makes a
nice piece of patter for the budding magician.

Radix sort The previous sections described how to do the trick. The question Why
does it work? has several answers. What’s new about the one that follows is the con-
nection to radix sort, a well known algorithm for putting things in order, for example,
in a computer [7, pp. 170–173].

Suppose you shuffle a deck of 27 cards numbered 0, 1, . . . , 26. (Counting from 0
is standard practice in computer science.) To restore them to numerical order:

• Express each of the card values in base three.
• Deal the cards into three piles labelled 0, 1, and 2, putting each card in the pile that

matches its rightmost digit. Pick up the cards with pile 0 on top, then pile 1, then
pile 2 on the bottom, preserving the order of the cards in each pile.

• Repeat, this time using the middle digit to place the cards in piles.
• Repeat, using the leftmost digit.

The cards are in order. To see why, note that after the first pass the cards with
numbers that end in 0 are above those that end in 1, which are in turn above those that
end in 2. As you deal the next pass, they retain that partial order in each pile of nine,
so, for example, the cards in pile 0 are the ones with numbers ending in “00”, “01” and
“02” in that order (whatever their leftmost digits). The final pass sorts by the leftmost
digit.

Think back to Gergonne’s trick. Only the card the spectator chose has a prescribed
position in the “sorted” deck. So when you deal out the cards you need not assign them
to labelled piles as in radix sort, you just play them as they come. After the deal you
label the single pile the spectator identifies with the appropriate digit 0, 1 or 2. Put that
one in its proper place as you pick up the piles.

When I teach kids this trick they find the base three expansion of the desired final
position of the card by taking out as many nines as they can (0, 1 or 2), then as many
threes as possible from the remainder. What’s left is the units digit. The standard com-
puter algorithm cleverly finds the digits in the opposite order, from right to left, but
this way is easier for kids to grasp.

Generalizing the trick and the sort Gergonne knew he could do his trick with a
deck of nn cards but only n = 3 is practical: 22 is a trivial 4, and 44 = 256 is too many
cards to handle. Martin Gardner discusses—in principle only—magician Mel Stover’s
gargantuan 1010 = ten billion card trick, dealing ten times into ten piles of a billion
cards each [4, ch. 3], [8, p. 21].

∗Before you try teaching this to children, work it for yourself several times. Just reading the description
doesn’t educate your hands. In fact I find I that mine forget the manipulations after a while.

†Some authors finesse the problem by counting from the bottom of the deck.
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But radix sort and hence Gergonne’s trick will work with an nk card deck for any
k. Since the numbers from 0 to nk − 1 have k digit base n expansions you will need
k passes to move the selected card to the selected place. In particular, decks of 8, 16
and 32 cards work well to teach binary notation. Expand the target position as a string
of three or four or five zeroes and ones. At each pass deal the cards into just two piles
and use the digits from right to left to determine which pile to pick up first.

In fact, radix sort works even when the size of the deck isn’t a power of the base.
k passes will do the job for m cards when nk−1 < m ≤ nk . For Gergonne’s trick the
piles must be the same height, so m must be a multiple of n. A great-nephew of mine
showed me a version with m = 21 and n = k = 3: the piles are seven cards high. Since
there are 27 three digit numbers in base three that you can use to specify the position
of the designated pile in each pass and only 21 positions, it takes some work to see
precisely how the final position of the selected card depends on the order in which you
pick up the piles. For some of the three digit strings that position depends on where the
card started. For example, you can show that if the selected card is in position 0, 1 or
2 then “001” moves it to to position 0 (the top of the deck) but any other selected card
ends up in position 1. Of course “000” moves any selected card to the top of the deck.
But there is no single three digit string that can move any selected card to position 1.

The following table shows the good target positions, to which you can move every
card, and the base three string (to be read from right to left) that tells you how to pick
up the piles.

position 0 2 3 6 7 10 12 13 17 18 20

code 000 010 011 022 100 111 122 200 211 212 222

Note that “111” is still the code for the middle (10th) position, even though it rep-
resents 13 in base three.

When m = 12 every target position is good, and often you have a choice of how to
get there, which may make the trick a little less transparent. But there’s no middle to
the deck: “111” moves some selected cards to position 5 and others to position 6.

position 0 1 2 3 4 5 6 7 8 9 10 11

code 000 010 012 021 100 110 112 121 200 210 222 221
001 022 101 122 201 222

I leave to the reader the verification of these tables and the formulation and proof of
any theorems they suggest. Finding them yourself will be more fun than searching for
them in the literature.

There’s a generalization of radix sort that points to more Gergonne tricks. Suppose
you wish to sort a shuffled full deck of 52 cards so that they end up in the order

♠A, ♠2, . . . , ♠K, ♥A, ♥2, . . . , ♥K, ♦A, ♦2, . . . , ♦K, ♣A, ♣2, . . . , ♣K

Simply deal first into 13 piles of 4 cards, one for each of the values A, 2, . . . , K.
Pick up the piles in order. Then deal into four piles of 13, one for each suit. Finally,
assemble the piles in the suit order you wish. This amounts to describing the cards
using a mixed radix in which the “units” digit is one of the thirteen possible card
values and the “tens” digit is the suit.

Using a mixed radix you can do Gergonne’s trick with a deck of, say, 15 cards,
in two passes rather than three by labelling the positions p between 0 and 14 with
digit strings “xy” where 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2 so that p = 3x + y. First deal the
cards into three piles of five, then into five piles of three. Use the digits y and then
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x to determine how many piles to put above the selected pile in each pass. Then you
can do the trick the other way, with piles of three followed by piles of five—write
p = 5x + y with 0 ≤ x ≤ 2 and 0 ≤ y ≤ 4. Dickson [3] and Onnen[9] wrote about
this generalization.

When you’ve mastered it, move on to a mixed radix with three-digit numbers. But
if you are serious about doing mixed radix Gergonne tricks, it pays to learn the right
to left digit algorithm for expressing numbers in the strange bases you invent.
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Let GM(a1, . . . , an) and AM(a1, . . . , an) denote the geometric and arithmetic mean
of positive real numbers a1, . . . , an, respectively. Kubelka [1] proves that for any
s > 0,

lim
n→∞

GM(1s, . . . , ns)

AM(1s, . . . , ns)
= s + 1

es
. (1)

He uses the squeeze theorem and a Riemann sum argument. In pursuing a sim-
pler method to show (1), I realized that ln[GM(1s, . . . , ns)/ns] is a Riemann sum
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for the area between the x-axis and y = ln(xs) from x = 0 to x = 1 and that
AM(1s, . . . , ns)/ns is also a Riemann sum for the area between the x-axis and y = xs

from x = 0 to x = 1. These observations yield the following two stronger results: For
any real number s > −1,

lim
n→∞

GM(1s, . . . , ns)

ns
= e−s, (2)

lim
n→∞

AM(1s, . . . , ns)

ns
= 1

s + 1
. (3)

To show (2), it is equivalent to show that

lim
n→∞

[
ln[GM(1s, . . . , ns)] − ln(ns)

]
= −s.

In fact, using the Riemann sum yields that

lim
n→∞

[
ln[GM(1s, . . . , ns)] − ln(ns)

]
= lim

n→∞
1

n

n∑
i=1

ln

(
i

n

)s

=
∫ 1

0
ln(xs)dx = −s.

Similarly, (3) follows from

lim
n→∞

AM(1s, . . . , ns)

ns
= lim

n→∞
1

n

n∑
i=1

(
i

n

)s

=
∫ 1

0
xsdx = 1

s + 1
.

Now (1) follows from (2) and (3) by division. This method works for s > −1, while
Kubelka [1] assumes s > 0.

Some other limits that involve GM(1s, . . . , ns) and AM(1s, . . . , ns), and that do
not follow directly from (1), can be evaluated by using (2) and (3). For example, using
(2) and (3) we can show that

lim
n→∞

[GM(1s, . . . , ns)]2

[AM(1s, . . . , ns)]2 + ns GM(1s, . . . , ns)
= e−s(s + 1)2

es + (s + 1)2
.
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limm→∞
∑m

k=0(k/m)m = e/(e − 1)

F INBARR HOLLAND
School of Mathematical Sciences
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Cork, Ireland

f.holland@ucc.ie

In his interesting article [4], Michael Spivey illustrates the utility and importance of
the Euler-Maclaurin formula by examining the asymptotic behavior of the power sums

1m + 2m + 3m + · · · + mm

as m → ∞. In particular, he uses this formula to evaluate the limit mentioned in the
title of this Note. Here we describe two alternative ways to determine this limit. The
first of these is elementary, but ad-hoc, while the second demonstrates the power and
elegance of the Lebesgue integral, and is, perhaps, more appealing.

To set the scene, note that, if m ≥ 1, then by reversing the sum we see that

m∑
k=0

(
k

m

)m

=
m∑

k=0

(
m − k

m

)m

=
m∑

k=0

(
1 − k

m

)m

=
∞∑

k=0

um(k),

where, for m = 1, 2, . . . ,

um(k) =
{(

1 − k
m

)m
, if 0 ≤ k ≤ m,

0, if m ≤ k.

Since the geometric-mean of a finite set of positive numbers does not exceed the
arithmetic-mean of the same set of numbers, it follows that, if 1 ≤ k ≤ m,

m+1

√(
1 − k

m

)m

· 1 ≤ m(1 − k
m ) + 1

m + 1
= 1 − k

m + 1
,

whence, for all k ≥ 0,

0 ≤ um(k) ≤ um+1(k), m = 1, 2, . . . .

Also, it’s familiar that

lim
m→∞ um(k) = e−k, k = 0, 1, 2 . . . .

Thus, for each integer k ≥ 0, the sequence m → um(k) increases to e−k .
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Armed with these facts, let us now return to the task of evaluating the limit

lim
m→∞

∞∑
k=0

um(k).

If it were legitimate to interchange the limit operation and the summation displayed
here, without qualification, we could conclude without further ado that

lim
m→∞

∞∑
k=0

um(k) =
∞∑

k=0

lim
m→∞ um(k) =

∞∑
k=0

e−k = e

e − 1
. (1)

However, if performed blindly, this maneuver may lead to an absurdity. As a cautionary
example, if for m = 1, 2, . . . ,

am(k) =
{

1
m+1 , if 0 ≤ k ≤ m,

0, if k ≥ m,

then

1 = lim
m→∞

∞∑
k=0

am(k) �=
∞∑

k=0

lim
m→∞ am(k) = 0.

Therefore, the crux of the matter is the justification of the interchange employed in (1).
We do this in two ways.

First we present an elementary approach. Since 0 ≤ um(k) ≤ e−k , we see that if
1 ≤ n ≤ m, then

n∑
k=0

um(k) ≤
∞∑

k=0

um(k) ≤
∞∑

k=0

e−k = e

e − 1
, (2)

But because um(k) ≤ um+1(k) for all k, m, the sequence

m →
∞∑

k=0

um(k)

is monotonic increasing. It is also bounded above by e/(e − 1) as (2) shows. Hence,
it is convergent, and its limit is finite. Also, limm→∞ um(k) = e−k , and so, keeping n
fixed, and making m tend to infinity in (2), we deduce that

n∑
k=0

e−k ≤ lim
m→∞

∞∑
k=0

um(k) ≤ e

e − 1
. (3)

Finally, letting n tend to infinity in (3), we see that (1) holds. In other words, the limit

lim
m→∞

m∑
k=0

(
k

m

)m

exists, and is equal to e/(e − 1).
(As the reader may care to confirm, essentially the same argument establishes the

following general result: Suppose (am(n)) is a double sequence of nonnegative real
numbers such that, for all natural numbers m, n, am(n) ≤ am+1(n). Then

lim
m→∞

∞∑
n=1

am(n) =
∞∑

n=1

lim
m→∞ am(n),
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even if not all of the limits are finite. Incidentally, the same conclusion holds under the
weaker hypothesis that, for all n ≥ 1, limm→∞ am(n) exists and exceeds am(n) for all
m ≥ 1.)

Another way to justify (1) is to set the problem in the context of the Lebesgue
integral [1], and to use one of its crowning glories, namely, Lebesgue’s Monotone
Convergence Theorem. This theorem states that if (X, μ) is a measure space, and ( fn)

is a sequence of measurable functions such that, for all x ∈ X ,

0 ≤ fn(x) ≤ fn+1(x), n = 1, 2, . . . , and f (x) = lim
n→∞ fn(x),

then f is measurable, and

lim
n→∞

∫
X

fn dμ =
∫

X
fn dμ.

This can be brought into play by noting that

∞∑
k=0

um(k) =
∫

N0

um dν,

where ν stands for the counting measure on the set of nonnegative integers N0, so that,
if E is any subset of N0, whether finite or infinite, then ν(E) is the cardinal number of
E . Hence, making a direct appeal to the Monotone Convergence Theorem, we deduce
that

lim
m→∞

m∑
k=0

(
k

m

)m

= lim
m→∞

∫
N0

um dν

=
∫

N0

e−k dν(k)

=
∞∑

k=0

e−k

= e

e − 1
.

Similarly, it can be proved by either of the above methods that, if s is any positive
real number, then

lim
m→∞

m∑
k=0

(
k

m

)sm

= es

es − 1
. (4)

This raises the question: what’s the story if s is complex? Answer: (4) continues to
hold provided the real part of s is positive. The quickest way to see this is to use
Lebesgue’s Dominated Convergence Theorem, which states that if ( fn) is a sequence
of measurable functions on a measure space (X, μ) such that, for all x ∈ X , | fn(x)| ≤
F(x), where

∫
X F dμ < ∞, and f (x) = limn→∞ fn(x), then

lim
n→∞

∫
X

fn dμ =
∫

X
fn dμ.

We leave it as an exercise for the reader to fill in the details. Alternatively, the same
result can be achieved by invoking Tannery’s Theorem [2], [3], which arguably is a
forerunner of Lebesgue’s convergence theorems.
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Summary Two proofs are given of the limit relation limm→∞ 1
mm

∑m
k=0 km = e

e−1 , a result due to Michael
Spivey. One is elementary, and suitable for discussion in an introductory course on Analysis; the other is more
sophisticated, and uses the machinery of the Lebesgue integral. Generalizations of the result are left as exercises
for the reader.
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In my paper [1] I prove

lim
m→∞

[(
1

m

)m

+
(

2

m

)m

+ · · · +
(

m − 1

m

)m]
= 1

e − 1
. (1)

This result can be generalized. For any fixed integer k.

lim
m→∞

[(
1

m

)m

+
(

2

m

)m

+ · · · +
(

m + k

m

)m]
= ek+1

e − 1
.

A simple way to prove this is to observe that, for k ≥ 0,

lim
m→∞

[(m

m

)m +
(

m + 1

m

)m

+ · · · +
(

m + k

m

)m]
= 1 + e + . . . + ek = ek+1 − 1

e − 1
,

(2)

and then sum Equations (1) and (2). A similar argument holds for k < 0.
There is also a mistake in my paper, first communicated to the editors by Vito Lam-

pret. Near the end of the paper I wish to show that

lim
m→∞

m∑
k=1

[
Bk

k! m1−k(m(m − 1) · · · (m − k + 2))

]
=

∞∑
k=1

Bk

k! . (3)

First, I express the left-hand side of Equation (3) as

lim
m→∞

m∑
k=1

Bk

k!
[

1 + O

(
1

m

)]
.

This is correct. However, the big-O notation disguises the fact that the implicit con-
stant in O(1/m) is dependent on k. Since k ranges from 1 to m over the sum, the
maximum constant for the O(1/m) expressions might depend on m, with the result
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that the maximum of the O(1/m) expressions might not actually be O(1/m). Thus, a
few lines later, it is invalid to make the claim

lim
m→∞

m∑
k=1

Bk

k!
[

O

(
1

m

)]
= lim

m→∞ O

(
1

m

) m∑
k=1

Bk

k! = 0,

even though
∑∞

k=1 Bk/k! converges.
However, this can be corrected fairly easily. Pick ε > 0 and find p such that∑
k>p

|Bk |
k! < ε. Then write

lim
m→∞

m∑
k=1

[
Bk

k! m1−k(m(m − 1) · · · (m − k + 2))

]

= lim
m→∞

p∑
k=1

[
Bk

k! m1−k(m(m − 1) · · · (m − k + 2))

]

+ lim
m→∞

∑
k>p

[
Bk

k! m1−k(m(m − 1) · · · (m − k + 2))

]
.

The sum in the first term to the right of the equals sign has only p terms in it, and so
the method in [1] is valid for this term. Thus the first term is within ε of

∑∞
k=1 Bk/k!.

Also, it is easy to see that the second term is within ε of 0. Equation (3) follows.
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Since the time of Euler, mathematicians have been investigating polynomials with in-
teger coefficients and the values they take on at integer points. It is well known, for
example, that a nonconstant polynomial f (x) with integer coefficients produces at
least one composite image [1, p. 46].
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In this note, we use Taylor expansions to improve this elementary result, showing
that f (x) takes an infinite number of composite values. Given a positive integer n, we
show that f (x) takes an infinite number of values that are divisible by at least n distinct
primes, and an infinite number of values that are divisible by pn for some prime p.

Notation For a nonzero integer c, let ω (c) denote the number of distinct prime num-
bers that divide c. For example, ω(700) = ω(22 × 52 × 7) = 3. Similarly, for an in-
teger c and a prime p, let ψp(c) denote the highest power of p that divides c, that
is, ψp(c) = e if and only if pe divides c but pe+1 does not divide c. For example,
ψ7(3773) = ψ7(73 × 11) = 3.

Now, and for the rest of this paper, let f (x) denote a polynomial with integer coeffi-
cients and degree d > 1. In this notation, we show that given a positive integer n, there
are infinitely many integers b such that ω( f (b)) > n and, for some prime p, infinitely
many integers b such that ψp( f (b)) > n.

Abundant prime factors Most classic number theory textbooks use the Taylor poly-
nomial to show that f (x) produces at least one composite image; that is, ω( f (b)) > 1
for at least one composite image; that is, either ω( f (b)) > 1 for some integer b or
φp( f (b)) > 1 for some integer b and some prime p. Following this lead we apply
the Taylor polynomial to show that ω( f (b)) > n for an infinite number of integers
b. On route to a contradiction, let us assume that there is a constant N such that
ω( f (a)) < N for all integer a such that f (a) �= 0. Thus, the set of positive integers
� = {ω( f (a)) : f (a) �= 0, a ∈ Z} has a largest element, call it n = ω( f (b)) > 1.
Suppose that the prime factorization of f (b) = c is given by

f (b) = c = pα1
1 pα2

2 . . . pαn
n .

Then the dth Taylor polynomial for f based at b is

f (b + tc2) = c + f (1)(b)

1! tc2 + f (2)(b)

2! t2c4 + · · · + f (d)(b)

d! tdc2d

= c + c2

(
f (1)(b)

1! t + f (2)(b)

2! c2t2 + · · · + f (d)(b)

d! c2d−2td

)
.

Inspection shows that f (b + tc2) is divisible by c for every integer t . One also sees,
since f (x) is not constant, that the expression in parenthesis is not zero.

From the first of these observations, since we assume that ω( f (b + tc2)) ≤ n, the
primes that divide c are exactly those that divide f (b + tc2), provided f (b + tc2) �= 0,
and the powers of those primes in the factorization of f (b + tc2) are at least as high as
the powers in c. This allows us to write f (b + tc2) = ±pe1

1 pe2
2 · · · pen

n , where αi ≤ ei

for all 1 ≤ i ≤ n, as long as f (b + tc2) �= 0.
Furthermore, if αi < ei , then pαi +1

i divides c2 and f (b + tc2) and consequently
also divides c = pα1

1 pα2
2 · · · pαn

n , which contradicts the Fundamental Theorem of Arith-
metic. Hence, f (b + tc2) = ±c, if f (b + tc2) �= 0, which contradicts the Fundamen-
tal Theorem of Algebra. Therefore, the set � = {ω( f (a)) : a ∈ Z, f (a) �= 0} is not
bounded above and we have proved the following result.

Given an integer n > 0, ω
(

f (b)
)

> n for an infinite number of integers b. (1)

High powers of some primes Now assume that f (x) is irreducible. Then f (x) and
its derivative f (1)(x) are relatively prime and, therefore,

h(x) f (x) + g(x) f (1)(x) = r
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for some polynomials h(x) and g(x) with integer coefficients, and a nonzero integer
r . Then, applying (1), we choose an integer b and a prime p so that p divides f (b) �=
0 but does not divide r . Hence, h(b) f (b) + g(b) f (1)(b) = r and so f (1)(b) is not
divisible by p.

Therefore, p and f (1)(b) are relatively prime and so

px + f (1)(b)y = 1

for some integers x and y. We now write f (b) = mpe where ψp( f (b)) = e ≥ 1 and
work as we did before to obtain

f (b − mype)

= mpe + f (1)(b)(−mype)

1! + f (2)(b)(−mype)2

2! + · · · + f d(b)(−mype)d

d!
= pe

(
m

(
1 − f (1)(b)y

) + f (2)(b)pe(−my)2

2! + · · · + f (d)(b)pe(d−1)(−my)d

d!
)

= pe

(
m(px) + f (2)(b)pe(−my)2

2! + · · · + f (d)(b)pe(d−1)(−my)d

d!
)

= pe+1

(
mx + f (2)(b)pe−1(−my)2

2! + · · · + f (d)(b)pe(d−1)−1(−my)d

d!
)

.

Hence,

1 ≤ ψp

(
f (b)

) = e < e + 1 ≤ ψp

(
f (b − mpe)

)
.

Further, since f (1)(b − mype) = f (1)(b) �= 0 (mod p), the process can be repeated
as many times as we please. Therefore, we have proved that the set{

ψp

(
f (a)

) : a ∈ Z, p prime
}

is not bounded above. Thus, we have proved the following result.

Given n > 0, ψp

(
f (b)

)
> n for a prime p and an infinite number of integers b. (2)

We complete our paper with the following immediate consequences of (1) and (2).

For an infinite number of integers b, f (b) is not a prime power. (3)

For an infinite number of integers b, f (b) is not square-free. (4)

There are infinitely many prime numbers. (5)
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Summary It is well known that a nonconstant polynomial f (x) with integer coefficients produces, for integer
values of x , at least one composite image. In this note, we use Taylor expansions to improve this elementary
result, showing that f (x) takes an infinite number of composite values. Given a positive integer n, we show that
f (x) takes an infinite number of values that are divisible by at least n distinct primes, and an infinite number of
values that are divisible by pn for some prime p.
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Proof Without Words:
Sums of Octagonal Numbers

Qk = 1 + 7 + 13 + · · · + (6k − 5) = k(3k − 2) ⇒
n∑

k=1

Qk = n(n + 1)(2n − 1)

2

For k = 4:

For n = 4:
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Yet Another Elementary Solution
of the Brachistochrone Problem

GARY BROOKFIELD
California State University, Los Angeles

Los Angeles, CA 90032-8204
gbrookf@calstatela.edu

In 1696 Johann Bernoulli issued a famous challenge to his fellow mathematicians:

Given two points A and B in a vertical plane, find the curve connecting the two
points such that an object, starting with zero velocity at A, slides without friction
along the curve to B in the least possible time.

Such a curve is called a brachistochrone. Newton, Leibniz, l’Hôpital, Jakob Bernoulli
(Johann’s brother), and the challenger were able to show that a brachistochrone is a
segment of a cycloid arc. By a cycloid arc we mean the curve traced out by a point on
the rim of a disk as it rolls once along a line. The graph shows the cycloid arc formed
by a disk rolling underneath a horizontal line, which is the orientation appropriate for
our problem.

y

x
A

B

Since the object starts with zero speed at A, this point lies at one end of the cycloid
arc. With the coordinate system shown, the cycloid arc is given by the equations

x = R(θ − sin θ) and y = R(1 − cos θ), (1)

with R being the radius of the disk and θ the angle that the disk has rotated from its
starting position at A.

The brachistochrone problem is considered to be the beginning of the calculus of
variations [3, 4], and a modern solution [8] would make use of general methods from
that branch of mathematics: the Euler, Lagrange, and Jacobi tests, the Weierstrass ex-
cess function and more. Even so, many solutions that avoid the calculus of variations
have been published [1, 2, 6]. The solution we present here amounts to little more than
a change of coordinate systems, and is general enough that we prove that the cycloid
arc yields the minimum travel time, not just among curves that are smooth, but also
among curves that have loops and corners.

To begin, we set up a Cartesian coordinate system for the vertical plane containing A
and B as above, with the x-axis horizontal and the positive y-axis pointing down. The
coordinates of the sliding object (x, y) are functions of time t on an interval [0, T ] such

Math. Mag. 83 (2010) 59–63. doi:10.4169/002557010X480017. c© Mathematical Association of America
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that A = (0, 0) = (x(0), y(0)) and B = (x(T ), y(T )). The number T is, of course, the
travel time of the object and the quantity we want to minimize.

Since we assume that there is no friction, the sum of the kinetic energy and the
gravitational potential energy, E = 1

2 mv2 − mgy, is a constant of the motion. Here
v is the speed of the object, m is the mass of the object, and g = 9.8 m/s2 is the
acceleration due to gravity at the Earth’s surface. By construction, we have y = 0 and
v = 0 at A, so E = 0, and

2gy = v2 (2)

throughout the object’s motion.
In what follows, we require that y > 0 and x > 0 except at A and (possibly) B. It is

plausible that any trajectory which minimizes travel time will satisfy these conditions.
Indeed, y ≥ 0 follows from (2).

We now change to a coordinate system in which the expected cycloid solutions to
the brachistochrone problem are built in. Specifically, we introduce new coordinates ρ

and τ , which are related to x and y by

x = ρτ − ρ2 sin
τ

ρ
and y = ρ2

(
1 − cos

τ

ρ

)
(3)

where 0 < ρ and 0 ≤ τ ≤ 2πρ. These equations are just (1) with R = ρ2 and θ =
τ/ρ. In particular, for a fixed ρ > 0, the curve parametrized by τ is a cycloid arc made
by rolling a disk of radius R = ρ2 along the x-axis. The graph shows several of these
cycloid arcs, as well as some constant τ curves, and makes plausible the fact, which
we prove later, that (3) represents a change of coordinate systems.

y

x
A

B

constant ρ

constant τ

We now suppose that all relevant trajectories of the object are given by functions ρ

and τ of time on the interval [0, T ] that determine the Cartesian coordinates (x, y) of
the object by (3). Notice from (3) that, since ρ > 0, the point A has zero τ -coordinate,
and so τ(0) = 0. We write ẋ , ẏ, τ̇ , and ρ̇ for the derivatives of these functions with
respect to time. Using the chain rule we can express ẋ and ẏ in terms of τ̇ and ρ̇:

ẋ = ∂x

∂τ
τ̇ + ∂x

∂ρ
ρ̇ =

(
ρ − ρ cos

τ

ρ

)
τ̇ +

(
τ + τ cos

τ

ρ
− 2ρ sin

τ

ρ

)
ρ̇,

ẏ = ∂y

∂τ
τ̇ + ∂y

∂ρ
ρ̇ =

(
ρ sin

τ

ρ

)
τ̇ +

(
2ρ − 2ρ cos

τ

ρ
− τ sin

τ

ρ

)
ρ̇.



VOL. 83, NO. 1, FEBRUARY 2010 61

With a bit of calculation, which the reader may enjoy carrying out, (2) can be also
be written in terms of τ̇ and ρ̇.

2gy = v2 = ẋ2 + ẏ2

= 2ρ2

(
1 − cos

τ

ρ

)
τ̇ 2

+ 2

(
4 ρ2

(
1 − cos

τ

ρ

)
− 4 ρ τ sin

τ

ρ
+ τ 2

(
1 + cos

τ

ρ

))
ρ̇2

= 2y τ̇ 2 + 4

(
2ρ sin

τ

2ρ
− τ cos

τ

2ρ

)2

ρ̇2

(4)

Using this equation it is now easy to solve the brachistochrone problem. The term
in ρ̇2 is nonnegative, so 2yτ̇ 2 ≤ 2gy and, since y > 0 except at A and (possibly) B,
we have τ̇ ≤ √

g except perhaps at t = 0 and t = T . Integrating this inequality on the
interval [0, T ] gives

τ(T ) =
∫ T

0
τ̇ dt ≤

∫ T

0

√
g dt = √

g T , (5)

or τ(T ) ≤ √
g T . Thus the time taken for the object to travel from A to B is bounded

below (except for the factor
√

g) by the τ -coordinate of B.
One obvious way to obtain this minimum travel time is to set τ̇ = √

g and ρ̇ = 0,
since then (4) holds and we get equality in (5). This, of course, means that ρ is a
constant and the path of the object is a cycloid arc.

When ρ is a constant, we have θ̇ = τ̇ /ρ = √
g/ρ = √

g/R, and so the object’s
motion is the same as a point on the rim of a disk of radius R rolling along the x-axis
with constant angular velocity ω = θ̇ = √

g/R.
For example, suppose that the points A and B are L units apart at the same elevation.

Then A and B are the end points of a cycloid arc made by one complete rotation of
a disk of radius R = L/2π . Thus ω = θ̇ = √

2πg/L and the time taken to travel
from A to B is T = 2π/ω = √

2π L/g. If L is 100 meters and g = 9.8 m/s2, then
T ≈ 8 seconds—faster than the world record time for sprinters over the same distance.

There are some important questions left unanswered by our discussion so far. Is
there a unique cycloid arc joining the given points A and B? (As noted by Zeng [9],
this question is often overlooked in the literature.) Which points (x, y) in the plane can
be expressed in the form (3) for some uniquely determined τ and ρ? Is the cycloid arc
the only way to get equality in (5) and hence minimum travel time?

To answer these questions, we first state some simple trigonometric inequalities,
which the reader can easily prove using calculus and double angle identities.

LEMMA 1. The following inequalities hold for 0 < θ < 2π:

(1) 0 < θ − sin θ .

(2) 0 < sin
θ

2
− θ

2
cos

θ

2
.

(3) 0 < 2(1 − cos θ) − θ sin θ .

Inequalities (1) and (2) hold also when θ = 2π .

We now use Lemma 1 to show that each relevant point in the plane has unique ρ-τ
coordinates that satisfy (3), and so there is a unique cycloid arc joining A and B.
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LEMMA 2. If x > 0 and y ≥ 0, then there are unique R > 0 and 0 ≤ θ ≤ 2π

satisfying (1), as well as unique ρ > 0 and 0 ≤ τ ≤ 2πρ satisfying (3).

Proof. The function

h(θ) = 1 − cos θ

θ − sin θ

is defined on (0, 2π], by the first inequality in Lemma 1, and has the derivative

h′(θ) = 2(cos θ − 1) + θ sin θ

(θ − sin θ)2
.

By the third part of Lemma 1, h′(θ) < 0 on (0, 2π) and so h is strictly decreasing on
(0, 2π].

We also have h(2π) = 0, and, by l’Hôpital’s rule, limθ→0+ h(θ) = ∞. Since y/x ≥
0 and h is continuous on (0, 2π], the Intermediate Value Theorem guarantees the ex-
istence of some θ in (0, 2π] such that h(θ) = y/x . Since h is strictly decreasing, θ is
unique. Now it is easy to check that θ and R = x/(θ − sin θ) is the unique solution of
(1), and that ρ = √

R and τ = θρ is the unique solution of (3).

Since each point (x, y) with x > 0 and y ≥ 0 corresponds to uniquely determined
ρ and τ , the equations in (3) represent a change of coordinate systems for the first
quadrant of the xy-plane. So long as B is in this quadrant, its ρ coordinate determines
a unique cycloid arc of the form (1) that passes through it. Moreover, if the object
remains in this quadrant, its motion can be described by functions ρ and τ of time.

We claimed at the beginning of this note that our proof shows that the cycloid arc
yields the minimum travel time among curves that may have loops or corners. Since
we are using two functions of time, x and y, to describe possible paths of the object,
loops are not a problem. At a corner in the path, however, the derivatives of x , y,
ρ, and τ may not exist. Since we have so far implicitly assumed that these functions
are differentiable, we now need to see whether our discussion can be generalized to
functions which are not differentiable everywhere. For our arguments to work, we need
that the integral in (5) exists and that τ is the indefinite integral of τ̇ . This happens if
and only if τ is absolutely continuous. Royden [7, Chapter 5] gives the definition and
properties of absolutely continuous functions—including the fact that such functions
are differentiable almost everywhere and are the indefinite integrals of their derivatives.

It is then natural to suppose that τ and ρ are both absolutely continuous, and that
(4) holds almost everywhere. With these assumptions, we can prove that the cycloid
arc is the only brachistochrone. If the concept of absolute continuity is unfamiliar, the
reader can show that the argument below works with the stronger assumption that τ

and ρ have continuous, or piecewise continuous, derivatives.
Suppose that, for some absolutely continuous functions τ and ρ, equality is attained

in (5):

∫ T

0
τ̇ dt =

∫ T

0

√
g dt.

Since (4) holds almost everywhere, we also have τ̇ ≤ √
g almost everywhere. These

conditions imply that τ̇ = √
g almost everywhere. Plugging this result into (4), and

using the second fact from Lemma 1 to show that the coefficient of ρ̇2 is nonzero,
we get that ρ̇ = 0 almost everywhere. This implies that ρ is a constant function, and
hence, that the minimum travel time is attained only by the cycloid arc.
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Summary This note provides an elementary solution of the brachistochrone problem. This problem is to find
the curve connecting two given points so that an object slides without friction along the curve from one point to
the other point in the least possible time. The key is to introduce a coordinate system where the expected cycloid
solutions are built in.

A Property Characterizing the Catenary
EDWARD PARKER

Brown University
Providence, RI 02912

Edward Parker@brown.edu

Let y(x) be any strictly positive C1 function, and consider the curve which is the graph
of y(x) over an interval [a, b] in the function’s domain. This curve has a well-defined
arc length and there is a well-defined area under it. Are there any functions which
have the property that the ratio of the area under the curve to the curve’s arc length is
independent of the interval over which they are measured?

In order for this property to hold, we must have [1, page 279]
∫ b

a
y(x) dx = k

∫ b

a

√
1 + y′(x)2 dx,

where k is a positive constant independent of a and b. In order for this to be true for
all intervals [a, b] in the function’s domain, the integrands must be identically equal.
Bringing k inside the right-hand integral, setting the integrands equal, and solving for
y′(x) yields

y′(x) = ±
√

y(x)2 − k2

k
. (1)

Clearly y(x) = k is a solution. When y(x) �= k, we can separate variables and find
a more surprising result:

y(x) = k cosh

(
x − c

k

)
,
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which is the well-known catenary curve. Therefore catenaries and constant functions
are the only curves that are twice-differentiable everywhere and have the property that
they bound an area proportional to their arc length over any horizontal interval. (If
we relax our smoothness requirements, we could also allow curves that are defined
piecewise to be either constant or catenary curves over different intervals).

We have obtained the geometric result that at every point on a catenary y dx = k ds,
where ds is the arc length differential. This property leads directly to the interesting
result that for every interval [a, b], the geometric centroid of the area under a catenary
curve defined on this interval is the midpoint of the perpendicular segment connecting
the centroid of the curve itself and the x-axis. Note that the centroid of the curve lies
above the curve itself.

The result that the content of a region bounded by a catenary is proportional to
the content of the boundary itself over any interval extends directly to the three-
dimensional case. If a surface of revolution has the property that the ratio of the volume
it encloses to its surface area is independent of the interval on which it is defined, then
it must obey the equation [1, pp. 326 and 466]

∫ b

a
πy(x)2 dx = k

∫ b

a
2πy(x)

√
1 + y′(x)2 dx .

After setting the integrands equal as before, a factor of πy(x) cancels from both
sides and we can rearrange to obtain equation (1) again, but with each k replaced by
the term 2k. Therefore the surface of revolution generated by

y(x) = 2k cosh

(
x − c

2k

)
,

which is the famous catenoid surface, is the only twice-differentiable surface of revo-
lution other than the cylinder of radius 2k which encloses a volume that is k times its
surface area over every horizontal interval.
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Summary We show that the area under a catenary curve is proportional to its length in the following sense:
given a catenary curve, we can take any horizontal interval and examine the ratio of the area under the curve to
the length of the curve on that interval, and we find that the resulting ratio is independent of the chosen interval.
This property extends to the three-dimensional case as well: the volume contained by a horizontal interval of a
catenoid surface is proportional to its surface area in the same sense. We also show from this property that the
centroid of the area under an interval of a catenary is the midpoint of the segment connecting the centroid of the
catenary and the x-axis.
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BERNARDO M. ÁBREGO, Editor
California State University, Northridge
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PROPOSALS

To be considered for publication, solutions should be received by July 1, 2010.

1836. Proposed by Michael Wolterman, Washington and Jefferson College, Washing-
ton, PA.

Let n ≥ 3 be a natural number. Find how many pairwise non-congruent triangles are
there among the

(n
3

)
triangles formed by selecting three vertices of a regular n-gon.

1837. Proposed by Duong Viet Thong, Nam Dinh University of Technology Education,
Nam Dinh City, Vietnam.

Let f : [1, 2] → R be a continuous function such that
∫ 2

1 f (x) dx = 0. Prove that

there exists a real number c in the open interval (1, 2), such that c f (c) = ∫ 2
c f (x) dx .

1838. Proposed by Costas Efthimiou, University of Central Florida, Orlando, FL.

Compute the sum
∞∑

n=0

∞∑
m=1

(−1)n+m ln(m + n)

m + n
.

1839. Proposed by Robert A. Russell, New York, NY.

Consider a sphere of radius 1 and three points A, B, and C on its surface, such that
the area of the convex spherical triangle ABC is π . Let L , M , and N be the midpoints
of the shortest arcs AB, BC , and C A. Give a characterization of the spherical triangle
LMN.

1840. Proposed by Tuan Le, 12th grade, Fairmont High School, Anaheim, CA.

Let a, b, and c be nonnegative real numbers such that no two of them are equal to zero.
Prove that

a

b + c
+ b

c + a
+ c

a + b
+ 3 3

√
abc

2(a + b + c)
≥ 2.
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1834 (corrected). Proposed by Cosmin Pohoata, student, National College “Tudor
Vianu,” Bucharest, Romania.

Let ABCD be a cyclic quadrilateral that also has an inscribed circle with center I ,
and let � be a line tangent to the incircle. Let A′, B ′, C ′, and D′, respectively, be the
projections of A, B, C , and D onto �. Prove that

AA′ · CC ′

AI · C I
= B B ′ · DD′

B I · DI
.

(This problem was originally published without an essential hypothesis. We apologize
to the proposer and to solvers. Solutions will be accepted through July 1, 2010.)

Quickies

Answers to the Quickies are on page 70.

Q997. Proposed by Éric Pité, Paris, France

Let p be a prime and n a positive integer. Show that n! divides
∏n−1

k=0(pn − pk).

Q998. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Let f, g : [0, 1] → R be two continuous functions. Prove that

lim
n→∞

∫ 1

0
f (xn)g(x) dx = f (0)

∫ 1

0
g(x) dx .

Solutions

Calculating the Wiener index February 2009

1811. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY.

Given a connected graph G with vertices v1, v2, . . . , vn, let di, j denote the distance
from vi to v j . (That is, di, j is the minimal number of edges that must be traversed in
traveling from vi to v j .) The Wiener index W (G) of G is defined by

W (G) =
∑

1≤i< j≤n

di, j .

a. Find the Wiener index for the grid-like graph

on 2n vertices.
b. Find the Wiener index for the comb-like graph

on 2n vertices.

Solution by G.R.A.20 Problems Group, Rome, Italy.
Let

f (n) =
n∑

i=1

n∑
j=i+1

|i − j | =
(

n + 1

3

)
.
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For 1 ≤ i ≤ n, let (1, i) denote the i th vertex from the right in the bottom row of either
graph and let (2, i) be the i th vertex from the right in the top row of either graph.

a. Let G1 be the grid-like graph. In this graph, the distance between (1, i) and (2, j)
is |i − j | + 1, and the distance between (1, i) and (1, j) or (2, i) and (2, j) is
|i − j |. Hence

W (G1) =
n∑

i=1

n∑
j=1

(|i − j | + 1) + 2
n∑

i=1

n∑
j=i+1

|i − j |

= 4 f (n) + n2 = n(n + 2)(2n − 1)

3
.

b. Let G2 be the comb-like graph. The the distance between (1, i) and (2, j) is
|i − j | + 1, distance between (1, i) and (1, j) is |i − j |, and for i 	= j , the dis-
tance between (2, i) and (2, j) is |i − j | + 2. Hence

W (G2) =
n∑

i=1

n∑
j=1

(|i − j | + 1) +
n∑

i=1

n∑
j=i+1

|i − j | +
n∑

i=1

n∑
j=i+1

(|i − j | + 2)

= 4 f (n) + n2 + 2

(
n

2

)
= n(2n2 + 6n − 5)

3
.

Also solved by Steve Abbott, Michael Andrioli, Michel Bataille (France), J. C. Binz (Switzerland), Robert Cal-
caterra, Mark Crawford, Chip Curtis, A. K. Desai, Robert L. Doucette, Joeseph Fredette, Fejéntaláltuka Szeged
Problem Solving Group (Hungary), Dmitry Fleischman, David Getling (New Zealand), Sharan Gopal, (India),
Russell Jay Hendel, Santhosh Karnik, Andrew Krull, Harris Kwong, David P. Lang, Jeremy Lee, Thomas C.
Lominac, Reiner Martin, David Nacin, José H. Nieto (Venezuela), José M. Pacheco and Ángel Plaza (Spain),
Robert Patenaude, Vadim Ponomarenko, Robert Pratt, Joel Schlosberg, Harry Sedinger, Nicholas C. Singer, Skid-
more College Problem Group, John H. Smith, Albert Stadler (Switzerland), Philip D. Straffin, John Sumner and
Aida Kadic-Galeb, Texas State University Problem Solvers Group, Bob Tomper, Alexey Vorobyov, Todd G. Will,
Michael Woltermann, and the proposer.

A flooral arrangement February 2009

1812. Proposed by Bob Tomper, University of North Dakota, Grand Forks, ND.

Let m and n be relatively prime positive integers. Prove that

n∑
k=1

k2

⌊
km

n

⌋
= n

n∑
k=1

k

⌊
km

n

⌋
− n(n2 − 1)(m − 1)

12
.

Solution by Albert Stadler, Herrliberg, Switzerland.
Because m and n are relatively prime, km/n is never an integer for 1 ≤ k ≤ n − 1.

Hence

n
n∑

k=1

k

⌊
km

n

⌋
−

n∑
k=1

k2

⌊
km

n

⌋
=

n−1∑
k=1

k(n − k)

⌊
km

n

⌋

= 1

2

n−1∑
k=1

k(n − k)

(⌊
km

n

⌋
+

⌊
(n − k)m

n

⌋)

= 1

2

n−1∑
k=1

k(n − k)(m − 1) = n(n2 − 1)(m − 1)

12
.

This completes the proof.
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Also solved by Michel Bataille (France), Robert Calcaterra, Chip Curtis, David Doster, Robert L. Doucette,
Eric Egge, Dmitry Fleischman, E. S. Friedkin, G.R.A.20 Problem Solving Group (Italy), Omran Kouba (Syria),
Peter W. Lindstrom, Kim McInturff, Rituraj Nandan, José H. Nieto (Venezuela), Éric Pité (France), Nicholas C.
Singer, John Sumner and Aida Kadic-Galeb, Marian Tetiva (Romania), Giang Tran, Serge Varjabedian (France),
Francisco Vial (Chile), Alexey Vorobyov, John B. Zacharias, and the proposer.

An inequality. February 2009

1813. Proposed by Elton Bojaxhiu, Albania, and Enkel Hysnelaj, Australia.

Let a, b, and c be positive real numbers. Prove that

1

a(1 + b)
+ 1

b(1 + c)
+ 1

c(1 + a)
≥ 3

3
√

abc(1 + 3
√

abc)
.

Solution by Young Ho Kim, Yonsei University, Seoul, Korea.
The required inequality is equivalent to

L = 1

3

(
1 + abc

a(1 + b)
+ 1 + abc

b(1 + c)
+ 1 + abc

c(1 + a)

)

≥ 1 + abc
3
√

abc(1 + 3
√

abc)
= 1

3
√

abc
− 1 + 3

√
abc.

Because

1 + 1 + abc

a(1 + b)
= 1 + a

a(1 + b)
+ b(1 + c)

1 + b
,

it follows that

L + 1 = 1

3

(
1 + a

a(1 + b)
+ 1 + b

b(1 + c)
+ 1 + c

c(1 + a)
+ b(1 + c)

1 + b
+ c(1 + a)

1 + c
+ a(1 + b)

1 + a

)
.

Finally, the Arithmetic Mean–Geometric Mean Inequality implies that

L + 1 ≥ 3

√
1 + a

a(1 + b)
· 1 + b

b(1 + c)
· 1 + c

c(1 + a)
+ 3

√
b(1 + c)

1 + b
· c(1 + a)

1 + c
· a(1 + b)

1 + a

= 1
3
√

abc
+ 3

√
abc,

which completes the proof.

Note. Some readers pointed out that the problem has appeared before. The references
given include T. Andreescu, V. Cirtoaje, G. Dospinescu, M. Lascu, Old and New In-
equalities, GIL Publishing House, 2004; and Problem 2977, proposed by V. Cirtoaje,
in Crux Mathematicorum with Mathematical Mayhem.

Also solved by Geroge Apostolopoulos (Greece), Michel Bataille (France), Robert Calcaterra, Minh Can,
Charles R. Diminnie, Fisher Problem Solving Group, Tom Leong, Omran Kouba (Syria), Valmir Krasniqi (Re-
public of Kosova), Paolo Perfetti (Italy), Henry Ricardo, C. R. Selvaraj and Suguna Selvaraj, Nicholas C. Singer,
Tony Tam, Stan Wagon, and the proposers.

A characterization of the Euler line February 2009

1814. Proposed by Michael Goldenberg and Mark Kaplan, The Ingenuity Project,
Baltimore Polytechnic Institute, Baltimore, MD.

Let A1 A2 A3 be a triangle with circumcenter O , and let B1 be the midpoint of A2 A3,
B2 be the midpoint of A3 A1, and B3 be the midpoint of A1 A2. For −∞ < t ≤ ∞ and



VOL. 83, NO. 1, FEBRUARY 2010 69

k = 1, 2, 3, let Bk,t be the point defined by
−−−→
O Bk,t = t

−−→
O Bk , (where by Bk,∞ we mean

the point at infinity in the direction of
−−→
O Bk .) Prove that for any t ∈ (−∞, ∞], the lines

Ak Bk,t , k = 1, 2, 3, are concurrent, and that the locus of all such points of concurrent
is the Euler line of triangle A1 A2 A3.

Solution by Herb Bailey, Rose Hulman Institute of Technology, Terre Haute, IN.
We assume that the triangle is not equilateral, since otherwise the Euler line does

not exist. We prove a more general result:

Let P be a point on the perpendicular bisector of side A1 A2, and let Bk,t be the
point defined by

−−→
P Bk,t = t

−−→
P Bk . Then lines Ak Bk,t , 1 ≤ k ≤ 3, are concurrent

and the locus of all such points of concurrence is a line. This line is the Euler
line if and only if P is chosen to be the circumcenter O .

Define an x, y-coordinate system with origin at P , x-axis parallel to side A1 A2, and
vertices A1(−a, d), A2(a, d), and A3(b, c), where a > 0 and c 	= d. Hence the co-
ordinates of midpoint B1 are (xB1, yB1) = ((a + b)/2, (d + c)/2), with similar ex-
pressions for midpoints B2 and B3. The coordinates of Bk,t are then (t xBk , t yBk ),
k = 1, 2, 3. Let �k denote the line Ak Bk,t , 1 ≤ k ≤ 3 and let Qi j , 1 ≤ i < j ≤ 3 be the
intersection of �i and � j . Calculations show that

Q12 = Q13 = Q23 =
(

bt

t + 2
,

(c + 2d)t

t + 2

)
.

Thus �1, �2, and �3 are concurrent. As t varies, these points generate a line provided
c + 2d and b are not both 0, that is, provided P is not the centroid of the triangle. If
c + 2d and b are not both 0, then the locus of concurrency is the line with equation

y = c + 2d

b
x,

where the line is vertical if b = 0. The coordinates of the centroid of triangle A1 A2 A3

are (b/3, (c + 2d)/3). If this triangle is not equilateral, then the circumcenter O =
(0, e) is distinct from the centroid, and the Euler line has equation

y = e + c + 2d − 3e

b
x .

This line coincides with the locus of concurrency if and only if e = 0, that is, if and
only if P = O .

Also solved by Michel Bataille (France), Robert Calcaterra, Robert L. Doucette, Dmitry Fleischman, L. R.
King, José H. Nieto (Venezuela), Joel Schlosberg, Raul A. Simon (Chile), Albert Stadler (Switzerland), John Sum-
ner and Aida Kadic-Galeb, Texas State University Problem Solvers Group, Alexey Vorobyov, and the proposers.

Subrings of Q. February 2009

1815. Proposed by Stephen J. Herschkorn, Rutgers University, New Brunswick, NJ.

It is well known that if R is a subring of the ring Z of integers, then there is a unique
positive integer m such that R = mZ. Determine a similar unique characterization for
any subring of the ring Q of rational numbers. What is the cardinality of the class of
all subrings of Q? (We do not assume that a ring has a multiplicative identity.)

Solution by Robert Calcaterra, University of Wisconsin–Platteville, Platteville, WI.
For any set P of prime numbers and any positive integer k relatively prime to every

element of P , let
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SP,k =
{

km

n
, m, n ∈ Z, n > 0, and such that every prime factor of n is in P

}
.

It is easy to check that SP,k is a subring of Q. We will show that every nontrivial
subring of Q is of this form.

Let R 	= {0} be a subring of Q, let D be the set of positive denominators of elements
in R when they are expressed in lowest terms, and let P be the set of all primes that
divide at least one element of D. Note that if m

n ∈ R with n ∈ Z
+, then m = n · m

n is
also in R. Thus, if R 	= {0}, then R ∩ Z

+ is nonempty. Let k be the minimum element
of R ∩ Z

+.
Now let r ∈ R. Then there exist an x ∈ D and an a ∈ Z such that x and a are

relatively prime and r = a
x . Thus a ∈ R, and the remainder when a is divided by k is

also in R. By the minimality of k, it follows that this remainder is 0, so a is a multiple
of k. Therefore, r ∈ SP,k , so R ⊆ SP,k .

Next assume that n is a product of primes in P and let p be a prime divisor of n.
Then p is a divisor of y for some y ∈ D. If y

p copies of a fraction with denominator
y are added, the result is a fraction with denominator p. Hence p ∈ D. Moreover,
since R is closed under multiplication, n must also belong to D. Hence there is a
b ∈ Z such that b and n are relatively prime and b

n ∈ R. The argument in the previous
paragraph implies that b = kc for some integer c, and the Euclidean algorithm implies
that sc + tn = 1 for some integers s and t . Therefore

km

n
= sm · b

n
+ tm · k ∈ R,

for every integer m. This completes the proof that R = SP,k , and completes the char-
acterization of the nontrivial subrings of Q.

Because the cardinality of the set of prime numbers is ℵ0, the countably infinite
cardinal, the number of subrings of Q is at least 2ℵ0 . On the other hand, the number of
subsets of Q is 2ℵ0 . Hence the cardinality of the set of all subrings of Q is 2ℵ0 .

Also solved by Michel Bataille (France), Paul Budney, Fisher Problem Solving Group, Dmitry Fleischman,
David P. Lang, Tom Moore, Northwestern University Math Problem Solving Group, Phill Schultz, Nicholas C.
Singer, John Sumner and Aida Kadic-Galeb, Tony Tam, Marian Tetiva (Romania), Texas State Problem Solvers
Group, Alexey Vorobyov, and the proposer.

Answers

Solutions to the Quickies from page 66.

A997. The group GL(n, Fp), consisting of all the invertible n × n matrices with en-
tries in Fp, is of order

∏n−1
k=0(pn − pk). The group of n × n permutation matrices is of

order n! and it is a subgroup of GL(n, Fp). Hence, by Lagrange Theorem, n! divides∏n−1
k=0(pn − pk).

A998. Let hn : [0, 1] → R be given by hn(x) = f (xn)g(x) and let h(x) =
limn→∞ hn(x) be the point-wise limit function of hn(x). Because f and g are con-
tinuous, it follows that h(x) = f (0)g(x) for x ∈ [0, 1), h(1) = f (1)g(1), and the
functions {hn(x)} are uniformly bounded, i.e., |hn(x)| ≤ M for all n and all x ∈ [0, 1].
Thus, by the Bounded Convergence Theorem,

lim
n→∞

∫ 1

0
hn(x) dx =

∫ 1

0
lim

n→∞ hn(x) dx =
∫ 1

0
h(x) dx = f (0)

∫ 1

0
g(x) dx .
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PAUL J. CAMPBELL, Editor

Beloit College

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this
section to call attention to interesting mathematical exposition that occurs outside the main-
stream of mathematics literature. Readers are invited to suggest items for review to the editors.

Suzuki, Jeff, Mathematics in Historical Context, MAA, 2009; x + 409 pp, $58.50 (member
price: $46.95). ISBN 978-0-88385-570-6.

I have complained elsewhere about how calculus is usually taught without any connections
pointed out to the history of science or to intellectual history in general (or to much of anything
outside of mathematics). Some reasons why are that students perceive calculus pragmatically as
just a tool (they are not seeking connections), and that calculus instructors don’t know connec-
tions (in going to a new edition, one well-known calculus book stripped out most applications
because teaching assistants didn’t understand them). This welcome book considers parts of the
mathematical whole up to the middle of the twentieth century and weaves those parts largely
into political history. How accurate the political history is, how adequate its interpretation, and
how close or tenuous the mathematical tie-ins, I must leave to more learned reviewers to eval-
uate. Wherever I dipped into the book, though, I was captivated and learned a connection or
insight that I had not been aware of. I was reminded of James Burke’s 1978 documentary se-
ries Connections, about technological innovations, and his follow-on books, video series, and
columns for Scientific American. (The book’s index is serviceable for major proper names but
is completely inadequate for terms: cossist? Enigma? cube and cosa? group theory? calculus?)

Inselberg, Alfred, Parallel Coordinates, Springer, 2009; xxvi + 554 pp plus Windows CD-ROM,
$79.95. ISBN 978-0-387-21507-5.

The basic idea of parallel coordinates is to represent a space of any number of dimensions by
lining up their coordinate axes in the plane of the page. A point in the space is represented by a
polygonal line crossing through its coordinates on the axes. The research question is how to dis-
cern, detect, and recognize relationships from such a display of a data set: “Parallel coordinates
. . . transforms the search for multivariate relations in a data set into a pattern-recognition prob-
lem.” The analysis, however, begins with inverse questions: How, for example, is a line through
the points manifested in the display? Software packages for exploratory data analysis and data
mining include parallel coordinates displays, with some of the classification automated. The
book includes case studies of data visualization through application of parallel coordinates to
collision avoidance (in air traffic control), improved production of computer chips, computer
vision, analyzing networks, recognizing a truck from its noise signature (a technique employed
in a recent episode of the TV series “Numb3rs”), and—germane even to pure mathematicians—
visualizing functions over the complex plane (by Yoav Yaari). The bulk of the book is devoted
to the underlying theory, beginning with transformations in projective geometry, how transfor-
mations are manifested in the plane with parallel coordinates, and continuing through analysis
of lines, hyperplanes, hypersurfaces, and proximity relations. The main prerequisite is linear
algebra. (The Preface begins with an alarmingly false version of the tale of John Snow’s identi-
fication of the source of cholera in London in 1854: Snow did not replace the pump handle but
at his instigation the local council removed it; and cholera was not transmitted from touching
the handle but from drinking the water. Mathematicians: If you write outside your specialty, to
avoid losing credibility get your facts straight! Would-be book editors: Take lots of science in
college, so you will be able to recognize such blunders.)
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Between the Folds. Video, 54 min., plus 30 min. of outtakes. Region 1 DVD, NTSC or PAL for-
mat. Directed by Vanessa Gould, edited by Kristi Barlow; executive producer Sally Rosenthal.
Available from Green Fuse Films; order form at http://www.greenfusefilms.com/store.
html. $55 for classroom and non-profit use; $25 for home/private use, also available subtitled
in German or in Italian. Discussion guide and downloadable folds at http://www.pbs.org/
independentlens/between-the-folds/getinvolved.html.

Origami metamorphosed in the middle of the last century from a simple craft to a sophisticated
form of sculpture, thanks to Akira Yoshizawa’s “breathing life into the paper.” Some current
origami pieces involve hundreds of diagram steps, thousands of folds, and dozens of hours to
create. In the current century, origami has drawn the attention of engineers (airbag design), bi-
ologists (protein folding), computer scientists (algorithms for flattening), and mathematicians
(what can be done?). This film has utterly entrancing sequences showing artists folding aston-
ishing pieces (and even making the paper); you can see how the “life in the paper,” and the
emotion in the creations, flows from the vitality in their eyes and speech. Featured toward the
end is Erik Demaine (MIT), who demonstrates a “post-modernist” variation: make folds, then
make a single cut through. He then mentions that such a procedure can be proved capable of
making any (straight-edged) shape. Another speaker emphasizes that origami math is not just
compartmentalized into geometry but involves “all of math,” mentioning abstract algebra, lin-
ear algebra, matrices, and more. Why do origami? “Because,” says Demaine, “it’s fun.” (The
discussion guide misspells Yoshizawa’s name.)

Hearn, Robert A., and Erik D. Demaine, Games, Puzzles, and Computation, A K Peters, 2009;
ix + 237 pp, $45. ISBN 978-1-56881-322-6.

Puzzles and games are fun because they are challenging. How challenging? Only a computer
scientist, analyzing them in terms of their complexity, can say for sure. And that is what Hearn
and Demaine do for a variety of games, using what they call constraint logic. They model
a game as an oriented graph with edge weights. The constraints are minimum flows at each
vertex, a legal move is the reversal of an edge’s orientation, and the goal of the game is to
reverse a particular edge. The many games considered include the commercial puzzles TipOver
(NP-complete), Mastermind (also NP-complete), and Rush Hour (PSPACE-complete), and the
two-player games Hex, Amazons, Othello, Gomoku, and Konane (all PSPACE-complete); there
is no mention of mancala games. The authors include open questions about many games. (Note
to the book’s editors: “course grain” on p. 2 should be “coarse grain.”)

Tan, Ming To., Guo-Liang Tan, and Man-Lai Tang, Sample surveys with sensitive questions: A
nonrandomized response approach, American Statistician 63 (1) (February 2009) 9–16.

Randomized response techniques try to assure anonymity in surveys with sensitive questions
(e.g, use of drugs). The respondent uses private randomization (e.g., a coin toss) to determine
which of two questions (one “sensitive,” one “harmless”) to answer. Using known probability
for the randomization, a researcher can estimate proportions in the population, and their vari-
ances. Tan et al. dispense with the coin, using an event with known probability in the population
(e.g., being born in the summer). They would have the subject respond “true” or “false” to “I
don’t use drugs and I was born in the summer.” This method is more efficient than traditional
randomized response, though nuances of how to use it in practice still need to be worked out.

Sudan, Madhu, Probabilistically checkable proofs, Communications of the Association for
Computing Machinery 52 (3) (March 2009) 76–84.

“Can a proof be checked without reading it?” Author Sudan discusses two approaches to con-
struct probabilistically checkable proofs (PCPs). The goal is a format in which a researcher
can write a proof, such that if the proof is correct, the reviewer will be convinced, and if it is
incorrect, the reviewer will reject it “with overwhelming probability.” Moreover, the reviewer’s
verification algorithm would spare the reviewer from reading the entire proof, because the al-
gorithm aspires to be only probabilistically correct. Sudan summarizes research on interactive
proofs and holographic proofs. Verifiers for PCPs can be constructed, but an obstacle is the size
of PCPs: For an n-bit classical proof, a PCP would have size about O

(
n(log n)

)O(1)
.
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Guidelines for Authors

What do you like to read? What kind of writing can grab the interest of an undergraduate
mathematics major? How can MATHEMATICS MAGAZINE serve to remind us all why we
chose to study mathematics in the first place? If you keep these questions firmly in mind,
you will be well on the way to meeting our editorial guidelines.

General information MATHEMATICS MAGAZINE is an expository journal of under-
graduate mathematics. In this section, we amplify our meaning of these words.

Articles submitted to the MAGAZINE should be written in a clear and lively exposi-
tory style. The MAGAZINE is not a research journal; papers in a terse “theorem-proof”
style are unsuitable for publication. The best contributions provide a context for the math-
ematics they deliver, with examples, applications, illustrations, and historical background.
We especially welcome papers with historical content, and ones that draw connections
among various branches of the mathematical sciences, or connect mathematics to other
disciplines.

Every article should contain interesting mathematics. Thus, for instance, articles on
mathematical pedagogy alone, or articles that consist mainly of computer programs, would
be unsuitable.

The MAGAZINE is an undergraduate journal in the broad sense that its intended audi-
ence is teachers of collegiate mathematics and their students. One goal of the MAGAZINE

is to provide stimulating supplements for undergraduate mathematics courses, especially at
the upper undergraduate level. Another goal is to inform and refresh the teachers of these
courses by revealing new connections or giving a new perspective on history. We also en-
courage articles that arise from undergraduate research or pose questions to inspire it. In
writing for the MAGAZINE, make your work attractive and accessible to non-specialists,
including well-prepared undergraduates.

Writing and revising MATHEMATICS MAGAZINE is responsible first to its readers
an then to its authors. A manuscript’s publishability therefore depends as much on the
quality of exposition as the mathematical significance. Our general advice is simple. Say
something new in an appealing way, or say something old in a refreshing, new way. But
say it clearly and directly, assuming a minimum of background. Our searchable database of
past pieces from the MAGAZINE and the College Mathematics Journal is reachable from
the MAGAZINE’S website and can help you check the novelty of your idea.

Make your writing vigorous, expressive, and informal, using the active voice. Give
plenty of examples and minimize computations. Help the reader understand your moti-
vation and share your insights. Illustrate your ideas with visually appealing graphics, in-
cluding figures, tables, drawings, and photographs.

First impressions are vital. Choose a short, descriptive, and attractive title; feel free to
make it funny, if that would draw the reader in. Be sure that the opening sentences provide a
welcoming introduction to the entire paper. Readers should know why they ought to invest
time reading your work.

Our referees are asked to give detailed suggestions on style, as well as check for mathe-
matical accuracy. In practice, almost every paper requires a careful revision by the author,
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followed by further editing in our office. To shorten this process, be sure to read your own
work carefully, possibly after putting it away for a cooling-off period.

Provide a generous list of references to invite readers—including students—to pursue
ideas further. Bibliographies may contain suggested reading along with sources actually
referenced. In all cases, cite sources that are currently and readily available.

Since 1976, the Carl B. Allendoerfer Prize has been awarded annually to recognize
expository excellence in the MAGAZINE. In addition to these models of style, many useful
references are available. Some are listed at the end of these guidelines.

Style and format We assume that our authors are at least sometime-readers of the MAG-
AZINE, with some knowledge of its traditions. If so, they know that most papers are pub-
lished either as Articles or as Notes. Articles have a broader scope than Notes and usually
run longer than 2000 words. Notes are typically shorter and more narrowly focused. Arti-
cles should be divided into a few sections, each with a carefully chosen title. Notes, being
shorter, usually need less formal sectioning. Footnotes and subsectioning are almost never
used in the MAGAZINE .

In addition to expository pieces, we accept a limited number of Math Bites, poems,
cartoons, Proofs Without Words, and other miscellanea.

List references either alphabetically or in the order cited in the text, adhering closely to
the MAGAZINE’S style for capitalization, use of italics, etc.

We recommend using simple, unadorned LATEX in the preparation of your manuscript.
Whatever technology you use, try to follow MAGAZINE style in small matters, but space
your manuscript generously and leave large margins for the benefit of reviewers. Include
the title and all authors’ names, addresses, and email addresses at the top of the first page.
Templates with further stylistic details are posted at our website in a variety of formats.
Number the pages. Whether LATEX is used or not, we hope to receive some electronic
version of every article accepted.

Authors who prefer “blind refereeing” may omit author information from their manu-
scripts. (Make sure you include it in a covering message!) In this case we will avoid reveal-
ing the authors’ identity to reviewers. We cannot promise absolute security in this regard.

For initial submission, graphical material may be interspersed with text. Each fig-
ure should be numbered, and referenced by number in the text. Authors themselves are
responsible for providing images of suitable quality. If a piece is to appear in the MAG-
AZINE, separate copies of all illustrations may be needed, both with and without added
lettering. We hope authors will be able to provide electronic versions of all figures. EPS is
the ideal format for line art. EPS, TIFF, or high-resolution JPEG are acceptable for photos
and screen captures.

Submitting manuscripts We encourage electronic submissions. Please send new
manuscripts my email directly to the editor at mathmag@maa.org. The same address
is appropriate for inquiries and general correspondence. A brief message containing con-
tact information with an attached PDF file is best. Word-processor or DVI files can also
be considered. Alternatively, manuscripts may be mailed to Mathematics Magazine, 132
Bodine Road, Berwyn, PA 19312-1027. If possible, please include an email address for
further correspondence.

Suggested Reading

1. R. P. Boas, Can we make mathematics intelligible? Amer. Math. Monthly 88 (1981) 727–731.
2. Paul Halmos, How to write mathematics, Enseign. Math. 16 (1970) 123–152. Reprinted in Paul Halmos,

Selecta, Expository Writings, Vol. 2, Springer, New York, 1983, 157–186.
3. Andrew Hwang, Writing in the age of LATEX, AMS Notices 42 (1995) 878–882.
4. D.E. Knuth, T. Larrabee, and P. M. Roberts, Mathematical Writing, MAA Notes #14, 1989.
5. Steven G. Krantz, A Primer of Mathematical Writing, American Mathematical Society, Providence, RI, 1997.
6. N. David Mermin, Boojums All the Way Through, Cambridge Univ. Press, Cambridge, UK, 1990.
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70th Annual William Lowell Putnam
Mathematical Competition

Editor’s Note: Additional solutions will be printed in the Monthly later in the year.

PROBLEMS

A1. Let f be a real-valued function on the plane such that for every square ABCD in the
plane, f (A) + f (B) + f (C) + f (D) = 0. Does it follow that f (P) = 0 for all points P
in the plane?

A2. Functions f , g, h are differentiable on some open interval around 0 and satisfy the
equations and initial conditions

f ′ = 2 f 2gh + 1

gh
, f (0) = 1,

g′ = f g2h + 4

f h
, g(0) = 1,

h′ = 3 f gh2 + 1

f g
, h(0) = 1.

Find an explicit formula for f (x), valid in some open interval around 0.

A3. Let dn be the determinant of the n × n matrix whose entries, from left to right and

then from top to bottom, are cos 1, cos 2, . . . , cos n2. (For example, d3 =
∣∣∣∣∣∣
cos 1 cos 2 cos 3
cos 4 cos 5 cos 6
cos 7 cos 8 cos 9

∣∣∣∣∣∣ .

The argument of cos is always in radians, not degrees.) Evaluate lim
n→∞ dn .

A4. Let S be a set of rational numbers such that

(a) 0 ∈ S;

(b) If x ∈ S then x + 1 ∈ S and x − 1 ∈ S; and

(c) If x ∈ S and x �∈ {0, 1}, then 1
x(x−1)

∈ S.

Must S contain all rational numbers?

A5. Is there a finite abelian group G such that the product of the orders of all its elements
is 22009?

A6. Let f : [0, 1]2 → R be a continuous function on the closed unit square such that
∂ f
∂x and ∂ f

∂y exist and are continuous on the interior (0, 1)2. Let a = ∫ 1
0 f (0, y) dy, b =∫ 1

0 f (1, y) dy, c = ∫ 1
0 f (x, 0) dx , and d = ∫ 1

0 f (x, 1) dx . Prove or disprove: There must
be a point (x0, y0) in (0, 1)2 such that

∂ f

∂x
(x0, y0) = b − a and

∂ f

∂y
(x0, y0) = d − c.

B1. Show that every positive rational number can be written as a quotient of products of

factorials of (not necessarily distinct) primes. For example,
10

9
= 2! · 5!

3! · 3! · 3! .

Math. Mag. 83 (2010) 75–80. doi:10.4169/002557010X485878. c© Mathematical Association of America
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B2. A game involves jumping to the right on the real number line. If a and b are real
numbers and b > a, the cost of jumping from a to b is b3 − ab2. For what real numbers c
can one travel from 0 to 1 in a finite number of jumps with total cost exactly c?

B3. Call a subset S of {1, 2, . . . , n} mediocre if it has the following property: Whenever
a and b are elements of S whose average is an integer, that average is also an element of S.
Let A(n) be the number of mediocre subsets of {1, 2, . . . , n}. [For instance, every subset
of {1, 2, 3} except {1, 3} is mediocre, so A(3) = 7.] Find all positive integers n such that
A(n + 2) − 2A(n + 1) + A(n) = 1.

B4. Say that a polynomial with real coefficients in two variables x, y is balanced if the
average value of the polynomial on each circle centered at the origin is 0. The balanced
polynomials of degree at most 2009 form a vector space V over R. Find the dimension of
V .

B5. Let f : (1,∞) → R be a differentiable function such that

f ′(x) = x2 − f (x)2

x2( f (x)2 + 1)
for all x > 1.

Prove that lim
x→∞ f (x) = ∞.

B6. Prove that for every positive integer n, there is a sequence of integers a0, a1, . . . ,

a2009 with a0 = 0 and a2009 = n such that each term after a0 is either an earlier term plus
2k for some nonnegative integer k, or of the form b mod c for some earlier positive terms b
and c. [Here b mod c denotes the remainder when b is divided by c, so 0 ≤ (b mod c) < c.]

SOLUTIONS

Solution to A1. Yes. Given a point P , choose a square ABCD with center P . The mid-
points of the sides form another square A′B ′C ′D′. Segments A′C ′ and B ′D′ divide ABCD
into four smaller squares. Summing the relation for these smaller squares, and subtract-
ing the relation for ABC D and twice the relation for A′B ′C ′D′, yields 4 f (P) = 0, so
f (P) = 0.

Solution to A2. First note that

( f gh)′ = f ′gh + f g′h + f gh′

=
(

2 f 2gh + 1

gh

)
gh +

(
f g2h + 4

f h

)
f h +

(
3 f gh2 + 1

f g

)
f g

= 6 f 2g2h2 + 6.

Therefore, F(x) = f (x)g(x)h(x) satisfies the separable equation F ′ = 6(F2 + 1). Solv-
ing this and using the initial condition F(0) = 1, we get F(x) = tan(6x + π/4).

Meanwhile, the first of the given differential equations can be written as

f ′ = 2 f F + f

F

which is also separable, and we get

f ′(x)

f (x)
= 2F(x) + 1

F(x)
= 2

sin(6x + π/4)

cos(6x + π/4)
+ cos(6x + π/4)

sin(6x + π/4)
,
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which integrates to

log f (x) = −1

3
log cos(6x + π/4) + 1

6
log sin(6x + π/4) + C

on an interval around x = 0 where all the quantities whose logarithms are involved are

positive. From f (0) = 1 we get C = 1
6 log

√
2

2 = log
(
1/

12
√

2
)
. Therefore, the answer is

f (x) = 1
12
√

2

6
√

sin(6x + π/4)
3
√

cos(6x + π/4)
.

Solution to A3. Observe that

1

2

(
cos k + cos(2n + k)

) = cos n · cos(n + k),

which shows that for n ≥ 3, the average of the first and third rows of the matrix is a nonzero
multiple of the second row. Thus, dn = 0 for n ≥ 3, so lim

n→∞ dn = 0.

Solution to A4. No. Experimentation shows that {m ± 1/n : m ∈ Z, n ∈ Z>0} ⊆ S, but
suggests that perhaps the simplest numbers not of this form, such as 2/5, need not be in S.
So we try letting S be the set of rational numbers that are not of the form m + 2/5 with
m ∈ Z. Then S trivially satisfies the first two conditions. Now suppose that x = a/b ∈
Q where a, b ∈ Z satisfy gcd(a, b) = 1 and b > 0, and suppose that 1

x(x−1)
= m + 2/5

for some m ∈ Z. Then b2

a(a−b)
= m + 2

5 , but a > a − b, so (a, a − b) must be one of

(5, 1), (5,−1), (1,−5), (−1,−5). So x ∈ {5/4, 5/6, 1/6, −1/4} and 1
x(x−1)

is not of the
form m + 2/5. Thus S is a counterexample.

Solution to A5. No. If |G| is divisible by an odd prime p, then |G| has an element of
order p, but this contradicts the product of the orders being 22009, so G ∼= Z/2e1Z × · · · ×
Z/2ek Z for some integers ei > 0. Let mr be the number of cyclic order-r subgroups of G.
Grouping elements by the subgroup they generate shows that the number of elements of
order r in G is φ(r)mr . Thus

22009 = 2m242m4 84m8168m16 · · ·
2009 = m2 + 2 · 2m4 + 3 · 4m8 + 4 · 8m16 + · · · (1)

In particular, m2 ≡ 1 (mod 4). But m2 = 2k − 1, so k = 1. Thus G is cyclic! So the se-
quence m2, m4, m8, . . . has the form 1, 1, . . . , 1, 0, 0, 0, . . . . To reach a sum of 2009 in
(1), we must certainly have m2 = m4 = m8 = 1. But then (1) yields the contradiction

2009 = 1 + 2 · 2 + 3 · 4 (mod 16).

Solution to A6. The statement is false. Let g(x) be a C1 function on [0, 1] such that
g(x) ≡ 0 on [0, 1/4] and [3/4, 1], g′(x) > 0 on (1/4, 1/2) and g′(x) < 0 on (1/2, 3/4).
Let h(x) = 1

2 g
( x

2 + 1
4

)
. Then

∫ 1
0 g(x) dx = ∫ 1

0 h(x) dx , h′(x) > 0 on (0, 1/2) and
h′(x) < 0 on (1/2, 1), and h(0) = h(1) = 0. Let

f (x, y) = (1 − y)g(x) + yh(x).

Then a = b = 0 and c = d = ∫ 1
0 g(x) dx . If the claim were true, there would be a point

(x, y) ∈ (0, 1)2 where ∂x f = ∂y f = 0. But ∂y f (x, y) = −g(x) + h(x), so we would have
g(x) = h(x). This can only occur on one of the intervals (1/4, 1/2) and (1/2, 3/4). But if
x ∈ (1/4, 1/2), then ∂x f (x, y) = (1 − y)g′(x) + yh′(x) > 0. Similarly, if x ∈ (1/2, 3/4),
then ∂x f < 0.
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Solution to B1. It’s enough to show that any prime can be written in this form, and this
can be done by strong induction. First, 1 = 2!/2!, 2 = 2!, and if all primes smaller than a
given prime p have expressions of the desired form, we can write p = p!

(p−1)! , factor the
denominator into primes (which are less than p), and use the induction hypothesis.

Solution to B2. Answer: Total cost c is possible if and only if 1/3 < c ≤ 1.

Since b3 − ab2 = b2(b − a), the total cost is an upper Riemann sum for the strictly
increasing function x2; that is, the area of a union of rectangles contained in [0, 1]2 and
containing the area under the graph of y = x2 for x ∈ [0, 1]. Therefore

∫ 1
0 x2dx < c ≤ 1.

Thus 1/3 < c ≤ 1 is necessary.
Suppose that c satisfies 1/3 < c ≤ 1. We can find a subdivision 0 ≤ x1 ≤ x2 ≤ · · · ≤

xn ≤ 1 whose upper Riemann sum r is less than c. For 0 ≤ t ≤ 1, let f (t) be the upper
Riemann sum associated with the subdivision 0 ≤ t x1 ≤ t x2 ≤ · · · ≤ t xn ≤ 1. Then f is
continuous on [0, 1] with f (0) = 1 and f (1) = r , so by the Intermediate Value Theorem,
there exists t ∈ [0, 1] with f (t) = c. Jumping from 0 to t x1 to . . . to t xn to 1 (and ignoring
jumps of length 0) yields a path with total cost c.

Solution to B3. Answer: {1, 3, 7, 15, . . . }, the set of powers of 2 minus 1.

Fix n. Let B(n + 2) be the number of mediocre subsets of {1, 2, 3, . . . , n + 2} that include
both 1 and n + 2. Let’s count all the mediocre subsets of {1, 2, 3, . . . , n + 2}: There are
B(n + 2), plus the number of mediocre subsets of {1, 2, 3, . . . , n + 1} (there are A(n + 1)

of these), plus the number of mediocre subsets of {2, . . . , n + 2} (these are the same sets
shifted by 1, so there are A(n + 1) of these, too), minus the number of mediocre subsets
of {2, 3, . . . , n + 1} (there are A(n) of these, and we must subtract them because we have
added them twice). That is,

A(n + 2) = B(n + 2) + 2A(n + 1) − A(n),

or equivalently,

A(n + 2) − 2A(n + 1) + A(n) = B(n + 2).

The problem is asking when B(n + 2) = 1.
If n + 1 has an odd factor f > 3 then {1, 2, 3, . . . , n + 2} and {1, 1 + f, 1 + 2 f,

. . . , n + 2} are two mediocre subsets that include 1 and n + 2, so B(n + 2) ≥ 2. On the
other hand, if n + 1 is a power of 2 is is easy to see that {1, 2, 3, . . . , n + 2} is the only
such subset, so B(n + 2) = 1 exactly when n + 1 is a power of 2.

Solution to B4. For 0 ≤ i ≤ 2009, let Hi be the space of homogeneous polynomials
of degree i . It is spanned by xi , xi−1 y, . . . , yi , so dim Hi = i + 1. A polynomial P =∑2009

i=0 Pi with Pi ∈ Hi is balanced if and only if for each r > 0, any of the following
equivalent conditions holds.

∫ 2π

0
P(r cos θ, r sin θ)dθ = 0,

∫ 2π

0

2009∑
i=0

Pi (r cos θ, r sin θ)dθ = 0,

2009∑
i=0

(∫ 2π

0
Pi (cos θ, sin θ)dθ

)
r i = 0.
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Therefore, P is balanced if and only if

∫ 2π

0
Pi (cos θ, sin θ)dθ = 0 for all i in the range 0 ≤ i ≤ 2009.

Let Vi be the kernel of the linear transformation φi : Hi → R defined by

φi ( f ) =
∫ 2π

0
f (cos θ, sin θ)dθ

for f ∈ Hi . If i is even, then f (x, y) = (x2 + y2)i/2 has nonzero image, so dim Vi =
dim Hi − 1 = i . If i is odd, then the average value of φ(x j yi− j ) on the unit circle is 0 by
the symmetry (x, y) �→ (−x, y) if j is odd, and (x, y) �→ (x,−y) if j is even; thus φ is
identically zero, so dim Vi = dim Hi = i + 1. Finally, V = ⊕2009

i=0 Vi , so

dim V =
2009∑
i=0

dim Vi =
2009∑
i=0

(i + 1) −
∑

0≤i≤2009
i even

1 = 2010 · 2011

2
− 2010

2
= 2020050.

Solution to B5. We first prove that f (x) has a limit (finite or infinite) at infinity. We
have

f ′(x) = 1

f (x)2 + 1
− f (x)2

x2( f (x)2 + 1)
≥ 1

f (x)2 + 1
− 1

x2

so that

0 ≤ f ′(x) + 1

x2
= d

dx

(
f (x) − 1

x

)
.

It follows that f (x) − 1/x is increasing, therefore has a limit L (which may be infinity).
But 1/x → 0 as x → ∞, hence we also have f (x) → L .

Suppose that L is finite. Then for some constant M we have f (x) ≤ M for all x ≥ 2,
and

f (x) = f (2) +
∫ x

2

t2 − f (t)2

t2( f (t)2 + 1)
dt

= f (2) +
∫ x

2

t2

t2( f (t)2 + 1)
dt −

∫ x

2

f (t)2

t2( f (t)2 + 1)
dt

≥ f (2) +
∫ x

2

1

M2 + 1
dt −

∫ ∞

2

1

t2
dt

≥ f (2) + x − 2

M2 + 1
− 1

2
,

which contradicts the assumption that f is bounded. Thus, lim
x→∞ f (x) = ∞.

Solution to B6. (based on a student paper) We begin with two lemmas.

LEMMA 1. If we’ve obtained b and c, b > c, then we can get b − c in three more steps.

Choose an integer m such that 2m > b. Then extend the sequence with (i) b + 2m , (ii)
c + 2m , (iii) b − c = b + 2m(mod 2m + c).

LEMMA 2. If we’ve obtained b > 0, then for any positive integer k, we can obtain bk

is six more steps.
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Choose an integer m such that 2m > 2bk . Then (i) 2m = a0 + 2m , (ii) 2km = a0 + 2km ,
(iii, iv, v) 2m − b from Lemma 1, (vi) bk = 2km (mod 2m − b).

So now we can use the following sequence. First choose m so that 2m > 2n. Then

a0 = 0

a1 = a0 + 22m = 22m

a2 = a1 + 20 = 22m + 1

a8 = (22m + 1)n−1 (Lemma 2)

a9 = a0 + 24m = 24m

a10 = (n − 1)22m + 1 = (22m + 1)n−1 (mod 24m)

a11 = a0 + 20 = 1

a14 = 22m − 1 (Lemma 1)

a15 = n = (n − 1)22m + 1 (mod 22m − 1)

ai = a0 + a15 = n for i ≤ 16 ≤ 2009.
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